ترغب بنشر مسار تعليمي؟ اضغط هنا

2D problems in groups

50   0   0.0 ( 0 )
 نشر من قبل Nikolay Nikolov
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a conjecture about stabilisation of deficiency in finite index subgroups and relate it to the D2 Problem of C.T.C. Wall and the Relation Gap problem. We verify the pro-$p$ version of the conjecture, as well as its higher dimensional abstract analogues.



قيم البحث

اقرأ أيضاً

In this paper we consider several classical and novel algorithmic problems for right-angled Artin groups, some of which are closely related to graph theoretic problems, and study their computational complexity. We study these problems with a view towards applications to cryptography.
Suppose an amenable group $G$ is acting freely on a simply connected simplicial complex $tilde X$ with compact quotient $X$. Fix $n geq 1$, assume $H_n(tilde X, mathbb{Z})=0$ and let $(H_i)$ be a Farber chain in $G$. We prove that the torsion of the integral homology in dimension $n$ of $tilde{X}/H_i$ grows subexponentially in $[G:H_i]$. By way of contrast, if $X$ is not compact, there are solvable groups of derived length 3 for which torsion in homology can grow faster than any given function.
We show that for every subset X of a closed surface M^2 and every basepoint x_0, the natural homomorphism from the fundamental group to the first shape homotopy group, is injective. In particular, if X is a proper compact subset of M^2, then pi_1(X,x _0) is isomorphic to a subgroup of the limit of an inverse sequence of finitely generated free groups; it is therefore locally free, fully residually free and residually finite.
249 - Jesper Grodal 2016
Classifying endotrivial kG-modules, i.e., elements of the Picard group of the stable module category for an arbitrary finite group G, has been a long-running quest, which by deep work of Dade, Alperin, Carlson, Thevenaz, and others, has been reduced to understanding the subgroup consisting of modular representations that split as the trivial module direct sum a projective module when restricted to a Sylow p-subgroup. In this paper we identify this subgroup as the first cohomology group of the orbit category on non-trivial p-subgroups with values in the units k^x, viewed as a constant coefficient system. We then use homotopical techniques to give a number of formulas for this group in terms of the abelianization of normalizers and centralizers in G, in particular verifying the Carlson-Thevenaz conjecture--this reduces the calculation of this group to algorithmic calculations in local group theory rather than representation theory. We also provide strong restrictions on when such representations of dimension greater than one can occur, in terms of the p-subgroup complex and p-fusion systems. We immediately recover and extend a large number of computational results in the literature, and further illustrate the computational potential by calculating the group in other sample new cases, e.g., for the Monster at all primes.
The characteristic index of a locally compact connected group $G$ is the non-negative integer $d$ for which we have a homeomorphism $Gcong Ktimes mathbb{R}^d$ with $Kle G$ maximal compact. We prove that the characteristic indices of closed connected subgroups are dominated by those of the ambient groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا