ﻻ يوجد ملخص باللغة العربية
We study the methodology and potential theoretical systematics of measuring Baryon Acoustic Oscillations (BAO) using the angular correlation functions in tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The fit results from the MLE are the least biased and their derived 1-$sigma$ error bar are closest to the Gaussian distribution value after removing the extreme mocks with non-detected BAO signal. We show that incorrect assumptions in constructing the template, such as mismatches from the cosmology of the mocks or the underlying photo-$z$ errors, can lead to BAO angular shifts. We find that MLE is the method that best traces this systematic biases, allowing to recover the true angular distance values. In a real survey analysis, it may happen that the final data sample properties are slightly different from those of the mock catalog. We show that the effect on the mock covariance due to the sample differences can be corrected with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. In the eigenmode expansion, the eigenmodes are provided by some proxy covariance matrix. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because of the number of free parameters is substantially reduced
In this contribution we present the preliminary results regarding the non-linear BAO signal in higher-order statistics of the cosmic density field. We use ensembles of N-body simulations to show that the non-linear evolution changes the amplitudes of
We implement a linear model for mitigating the effect of observing conditions and other sources of contamination in galaxy clustering analyses. Our treatment improves upon the fiducial systematics treatment of the Dark Energy Survey (DES) Year 1 (Y1)
Our goals are (i) to search for BAO and large-scale structure in current QSO survey data and (ii) to use these and simulation/forecast results to assess the science case for a new, >10x larger, QSO survey. We first combine the SDSS, 2QZ and 2SLAQ sur
We evaluate the impact of imaging systematics on the clustering of luminous red galaxies (LRG), emission-line galaxies (ELG) and quasars (QSO) targeted for the upcoming Dark Energy Spectroscopic Instrument (DESI) survey. Using Data Release 7 of the D
The present paper analyses the quasar clustering using the two-point correlation function (2pCF) and the largest existing sample of photometrically selected quasars: the SDSS NBCKDE catalogue (from the SDSS DR6). A new technique of random catalogue g