ترغب بنشر مسار تعليمي؟ اضغط هنا

MobileNetV2: Inverted Residuals and Linear Bottlenecks

70   0   0.0 ( 0 )
 نشر من قبل Mark Sandler
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3. The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters

قيم البحث

اقرأ أيضاً

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchm arks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion) is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Deep convolutional neural networks (CNN) have achieved astonishing results in a large variety of applications. However, using these models on mobile or embedded devices is difficult due to the limited memory and computation resources. Recently, the i nverted residual block becomes the dominating solution for the architecture design of compact CNNs. In this work, we comprehensively investigated the existing design concepts, rethink the functional characteristics of two pointwise convolutions in the inverted residuals. We propose a novel design, called asymmetrical bottlenecks. Precisely, we adjust the first pointwise convolution dimension, enrich the information flow by feature reuse, and migrate saved computations to the second pointwise convolution. By doing so we can further improve the accuracy without increasing the computation overhead. The asymmetrical bottlenecks can be adopted as a drop-in replacement for the existing CNN blocks. We can thus create AsymmNet by easily stack those blocks according to proper depth and width conditions. Extensive experiments demonstrate that our proposed block design is more beneficial than the original inverted residual bottlenecks for mobile networks, especially useful for those ultralight CNNs within the regime of <220M MAdds. Code is available at https://github.com/Spark001/AsymmNet
89 - Zeyi Huang , Wei Ke , Dong Huang 2019
Improving object detectors against occlusion, blur and noise is a critical step to deploy detectors in real applications. Since it is not possible to exhaust all image defects through data collection, many researchers seek to generate hard samples in training. The generated hard samples are either images or feature maps with coarse patches dropped out in the spatial dimensions. Significant overheads are required in training the extra hard samples and/or estimating drop-out patches using extra network branches. In this paper, we improve object detectors using a highly efficient and fine-grain mechanism called Inverted Attention (IA). Different from the original detector network that only focuses on the dominant part of objects, the detector network with IA iteratively inverts attention on feature maps and puts more attention on complementary object parts, feature channels and even context. Our approach (1) operates along both the spatial and channels dimensions of the feature maps; (2) requires no extra training on hard samples, no extra network parameters for attention estimation, and no testing overheads. Experiments show that our approach consistently improved both two-stage and single-stage detectors on benchmark databases.
The prevailing framework for matching multimodal inputs is based on a two-stage process: 1) detecting proposals with an object detector and 2) matching text queries with proposals. Existing two-stage solutions mostly focus on the matching step. In th is paper, we argue that these methods overlook an obvious emph{mismatch} between the roles of proposals in the two stages: they generate proposals solely based on the detection confidence (i.e., query-agnostic), hoping that the proposals contain all instances mentioned in the text query (i.e., query-aware). Due to this mismatch, chances are that proposals relevant to the text query are suppressed during the filtering process, which in turn bounds the matching performance. To this end, we propose VL-NMS, which is the first method to yield query-aware proposals at the first stage. VL-NMS regards all mentioned instances as critical objects, and introduces a lightweight module to predict a score for aligning each proposal with a critical object. These scores can guide the NMS operation to filter out proposals irrelevant to the text query, increasing the recall of critical objects, resulting in a significantly improved matching performance. Since VL-NMS is agnostic to the matching step, it can be easily integrated into any state-of-the-art two-stage matching methods. We validate the effectiveness of VL-NMS on two multimodal matching tasks, namely referring expression grounding and image-text matching. Extensive ablation studies on several baselines and benchmarks consistently demonstrate the superiority of VL-NMS.
Tracking the 6D pose of objects in video sequences is important for robot manipulation. This work presents se(3)-TrackNet, a data-driven optimization approach for long term, 6D pose tracking. It aims to identify the optimal relative pose given the cu rrent RGB-D observation and a synthetic image conditioned on the previous best estimate and the objects model. The key contribution in this context is a novel neural network architecture, which appropriately disentangles the feature encoding to help reduce domain shift, and an effective 3D orientation representation via Lie Algebra. Consequently, even when the network is trained solely with synthetic data can work effectively over real images. Comprehensive experiments over multiple benchmarks show se(3)-TrackNet achieves consistently robust estimates and outperforms alternatives, even though they have been trained with real images. The approach runs in real time at 90.9Hz. Code, data and supplementary video for this project are available at https://github.com/wenbowen123/iros20-6d-pose-tracking
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا