ترغب بنشر مسار تعليمي؟ اضغط هنا

Second order cosmological perturbations: simplified gauge change formulas

68   0   0.0 ( 0 )
 نشر من قبل Claes Uggla
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a new formulation of the change of gauge formulas in second order cosmological perturbation theory which unifies and simplifies known results. Our approach is based on defining new second order scalar perturbation variables by adding a multiple of the square of the corresponding first order variables to each second order variable. A bonus is that these new perturbation variables are of broader significance in that they also simplify the analysis of second order scalar perturbations in the super-horizon regime in a number of ways, and lead to new conserved quantities.



قيم البحث

اقرأ أيضاً

We present the first computation of the cosmological perturbations generated during inflation up to second order in deviations from the homogeneous background solution. Our results, which fully account for the inflaton self-interactions as well as fo r the second-order fluctuations of the background metric, provide the exact expression for the gauge-invariant curvature perturbation bispectrum produced during inflation in terms of the slow-roll parameters or, alternatively, in terms of the scalar spectral $n_S$ and and the tensor to adiabatic scalar amplitude ratio $r$. The bispectrum represents a specific non-Gaussian signature of fluctuations generated by quantum oscillations during slow-roll inflation. However, our findings indicate that detecting the non-Gaussianity in the cosmic microwave background anisotropies emerging from the second-order calculation will be a challenge for the forthcoming satellite experiments.
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cu bic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higss inflation.
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We d erive the second-order action of scalar perturbations and resulting linear perturbation equations of motion without fixing any gauge conditions. Depending on physical problems at hand, most convenient gauges can be chosen to study the development of inhomogeneities in the presence of scalar and vector fields coupled to gravity. This versatile framework, which encompasses Horndeski and generalized Proca theories as special cases, is applicable to a wide variety of cosmological phenomena including nonsingular cosmology, inflation, and dark energy. By deriving conditions for the absence of ghost and Laplacian instabilities in several different gauges, we show that, unlike Horndeski theories, it is possible to evade no-go arguments for the absence of stable nonsingular bouncing/genesis solutions in both generalized Proca and SVT theories. We also apply our framework to the case in which scalar and vector fields are responsible for dark energy and find that the separation of observables relevant to the evolution of matter perturbations into tensor, vector, and scalar sectors is transparent in the unitary gauge. Unlike the flat gauge chosen in the literature, this result is convenient to confront SVT theories with observations associated with the cosmic growth history.
We study a class of almost scale-invariant modified gravity theories, using a particular form of $f(R, G) = alpha R^2 + beta G log G$ where $R$ and $G$ are the Ricci and Gauss-Bonnet scalars, respectively and $alpha$, $beta$ are arbitrary constants. We derive the Einstein-like field equations to first order in cosmological perturbation theory in longitudinal gauge.
We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrins ic, pure state of the perturbations, is driven by the interactions with a generic environment, to become increasingly localized in field space as a mode exists the horizon during inflation. With a favourable coupling to the environment, the conditioned state of the perturbations becomes highly localized in field space due to the expansion of spacetime by a factor of roughly exp(-c N), where N~50 and c is a model dependent number of order 1. Effectively the state rapidly becomes specified completely by a point in phase space and an effective, classical, stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic process is described by the solution of the master equation that describes the perturbations coupled to the environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا