ﻻ يوجد ملخص باللغة العربية
In this paper we present a new formulation of the change of gauge formulas in second order cosmological perturbation theory which unifies and simplifies known results. Our approach is based on defining new second order scalar perturbation variables by adding a multiple of the square of the corresponding first order variables to each second order variable. A bonus is that these new perturbation variables are of broader significance in that they also simplify the analysis of second order scalar perturbations in the super-horizon regime in a number of ways, and lead to new conserved quantities.
We present the first computation of the cosmological perturbations generated during inflation up to second order in deviations from the homogeneous background solution. Our results, which fully account for the inflaton self-interactions as well as fo
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cu
In scalar-vector-tensor (SVT) theories with parity invariance, we perform a gauge-ready formulation of cosmological perturbations on the flat Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) background by taking into account a matter perfect fluid. We d
We study a class of almost scale-invariant modified gravity theories, using a particular form of $f(R, G) = alpha R^2 + beta G log G$ where $R$ and $G$ are the Ricci and Gauss-Bonnet scalars, respectively and $alpha$, $beta$ are arbitrary constants.
We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrins