ﻻ يوجد ملخص باللغة العربية
We study the interaction between elliptically polarized light and a three-dimensional Luttinger semimetal with quadratic band touching using Floquet theory. In the absence of light, the touching bands can have the same or the opposite signs of the curvature; in each case, we show that simply tuning the light parameters allows us to create a zoo of Weyl semimetallic phases. In particular, we find that double and single Weyl points can coexist at different energies, and they can be tuned to be type I or type II. We also find an unusual phase transition, in which a pair of Weyl nodes form at finite momentum and disappear off to infinity. Considering the broad tunability of light and abundance of materials described by the Luttinger Hamiltonian, such as certain pyrochlore iridates, half-Heuslers and zinc-blende semiconductors, we believe this work can lay the foundation for creating Weyl semimetals in the lab and dynamically tuning between them.
We show that hybrid Dirac and Weyl semimetals can be realized in a three-dimensional Luttinger semimetal with quadratic band touching (QBT). We illustrate this using periodic kicking scheme. In particular, we focus on a momentum-dependent drivings (n
While nondissipative hydrodynamics in two-dimensional electron systems has been extensively studied, the role of nondissipative viscosity in three-dimensional transport has remained elusive. In this work, we address this question by studying the nond
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp
We present how to detect type-$1$ Weyl nodes in a material by inelastic neutron scattering. Such an experiment first of all allows one to determine the dispersion of the Weyl fermions. We extend the reasoning to produce a quantitative test of the Wey
It is commonly believed that a non-interacting disordered electronic system can undergo only the Anderson metal-insulator transition. It has been suggested, however, that a broad class of systems can display disorder-driven transitions distinct from