ﻻ يوجد ملخص باللغة العربية
We develop a Monte-Carlo code to compute the Compton scattered X-ray flux arising from a hot inner flow which undergoes Lense-Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate back the disk and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modelled within the framework of general relativity, taking light-bending and gravitational redshift into account. The simulations are performed in the context of the Lense-Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk towards Innermost Stable Circular Orbit (ISCO). In the hard state where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with the fractional variability amplitude of $leq$10%; in the soft state where the Comptonizing flow is cooled down and thus becomes geometrically thin, and the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.
The timing properties of X-ray binaries are still not understood, particularly the presence of quasi-periodic oscillations (QPOs) in their X-ray power spectra. The solid-body regime of Lense-Thirring precession is one prominent model invoked to expla
An elementary pedagogical derivation of the Lense-Thirring precession is given based on the use of Hamilton vector. The Hamilton vector is an extra constant of motion of the Kepler/Coulomb problem related simply to the more popular Runge-Lenz vector.
The geodesics of bound spherical orbits i.e. of orbits performing Lense-Thirring precession, are obtained in the case of the $Lambda$-term within gravito-electromagnetic formalism. It is shown that the presence of the $Lambda$-term in the equations o
The orbital Lense-Thirring precession is considered in the context of constraints for weak-field General Relativity involving the cosmological constant $Lambda$. It is shown that according to the current accuracy of satellite measurements the obtaine
Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicte