ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe$_{1.07}$Te

54   0   0.0 ( 0 )
 نشر من قبل Yu Song
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional superconductivity typically emerges in the presence of quasi-degenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe$_{1.07}$Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe$_{1-x}$Se$_x$ superconductors. We confirm that the low energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the $ab$-plane in Fe$_{1.07}$Te, it takes less energy for them to fluctuate out-of-plane, similar to BaFe$_2$As$_2$ and NaFeAs. At energies above $Egtrsim20$ meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range ordered local moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe$_{1.07}$Te being quasi-degenerate with plaquette magnetic order.



قيم البحث

اقرأ أيضاً

34 - V. Kataev 1999
Measurements of the static magnetization, susceptibility and ESR of Gd spin probes have been performed to study the properties of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4 (x less or equal 0.02) with the low temperature tetragonal structu re. According to the static magnetic measurements the CuO_2 planes are magnetically decoupled in this structural phase. The ESR study reveals strong magnetic fluctuations at the ESR frequency which are not present in the orthorhombic phase. It is argued that this drastic enhancement of the spin fluctuations is due to a considerable weakening of the interlayer exchange and a pronounced influence of hole motion on the antiferromagnetic properties of lightly hole doped La_2CuO_4. No evidence for the stripe phase formation at small hole doping is obtained in the present study.
We use inelastic neutron scattering to show that the spin waves in the iron chalcogenide Fe$_{1.05}$Te display novel dispersion clearly different from those in the related iron pnictide systems. By fitting the spin waves to a Heisenberg Hamiltonian, we extract magnetic exchange couplings that are dramatically different from both predictions by density functional calculations and measurements on the iron pnictide CaFe$_2$As$_2$. While the nearest-neighbor exchange couplings in CaFe$_2$As$_2$ and Fe$_{1.05}$Te are quite different, their next-nearest-neighbor exchange couplings are similar. These results suggest that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the next-nearest-neighbor magnetic coupling between the irons.
We report neutron scattering measurements of cooperative spin excitations in antiferromagnetically ordered BaFe2As2, the parent phase of an iron pnictide superconductor. The data extend up to ~100meV and show that the spin excitation spectrum is shar p and highly dispersive. By fitting the spectrum to a linear spin-wave model we estimate the magnon bandwidth to be in the region of 0.17eV. The large characteristic spin fluctuation energy suggests that magnetism could play a role in the formation of the superconducting state.
491 - J. W. Mei , Z. Y. Weng 2009
We identify a new kind of elementary excitations, spin-rotons, in the doped Mott insulator. They play a central role in deciding the superconducting transition temperature Tc, resulting in a simple Tc formula,Tc=Eg/6, with Eg as the characteristic en ergy scale of the spin rotons. We show that the degenerate S=1 and S=0 rotons can be probed by neutron scattering and Raman scattering measurements, respectively, in good agreement with the magnetic resonancelike mode and the Raman A1g mode observed in the high-Tc cuprates.
We report a Fe Kbeta x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca_{1-x}RE_xFe_2As_2 (RE=La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ~0.9 mu_B at T = 300 K to ~0.45 mu_B at T = 70 K. In the collapsed tetragonal (cT) phase of Nd- and Pr-doped samples (T<70K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca_{1-x}RE_xFe_2As_2 (RE= Pr and Nd) exhibits a spin-state transition and provide direct evidence for a non-magnetic Fe^{2+} ion in the cT-phase, as predicted by Yildirim. We argue that the gradual change of the the spin-state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hunds rule coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا