ﻻ يوجد ملخص باللغة العربية
The majority of stars form in a clustered environment. This has an impact on the evolution of surrounding protoplanetary discs (PPDs) due to either photoevaporation or tidal truncation. Consequently, the development of planets depends on formation environment. Here we present the first thorough investigation of tidally induced angular momentum loss in PPDs in the distant regime, partly motivated by claims in the literature for the importance of distant encounters in disc evolution. We employ both theoretical predictions and dynamical/hydrodynamical simulations in 2D and 3D. Our theoretical analysis is based on that of Ostriker (1994) and leads us to conclude that in the limit that the closest approach distance $x_{min} gg r$, the radius of a particle ring, the fractional change in angular momentum scales as $(x_{min}/r)^{-5}$. This asymptotic limit ensures that the cumulative effect of distant encounters is minor in terms of its influence on disc evolution. The angular momentum transfer is dominated by the $m=2$ Lindblad resonance for closer encounters and by the $m=1$, $omega = 0$ Lindblad resonance at large $x_{min}/r$. We contextualise these results by comparing expected angular momentum loss for the outer edge of a PPD due to distant and close encounters. Contrary to the suggestions of previous works we do not find that distant encounters contribute significantly to angular momentum loss in PPDs. We define an upper limit for closest approach distance where interactions are significant as a function of arbitrary host to perturber mass ratio $M_2/M_1$.
Most stars form and spend their early life in regions of enhanced stellar density. Therefore the evolution of protoplanetary discs (PPDs) hosted by such stars are subject to the influence of other members of the cluster. Physically, PPDs might be tru
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently
The nature and rate of (viscous) angular momentum transport in protoplanetary discs (PPDs) has important consequences for the formation process of planetary systems. While accretion rates onto the central star yield constraints on such transport in t
Observations indicate that the dispersal of protoplanetary discs in star clusters occurs on time scales of about 5 Myr. Several processes are thought to be responsible for this disc dispersal. Here we compare two of these processes: dynamical encount
Proto-planetary disc surveys conducted with ALMA are measuring disc radii in multiple star forming regions. The disc radius is a fundamental quantity to diagnose whether discs undergo viscous spreading, discriminating between viscosity or angular mom