ﻻ يوجد ملخص باللغة العربية
Quantum gravity aims to describe gravity in quantum mechanical terms. How exactly this needs to be done remains an open question. Various proposals have been put on the table, such as canonical quantum gravity, loop quantum gravity, string theory, etc. These proposals often encounter technical and conceptual problems. In this chapter, we focus on canonical quantum gravity and discuss how many conceptual problems, such as the measurement problem and the problem of time, can be overcome by adopting a Bohmian point of view. In a Bohmian theory (also called pilot-wave theory or de Broglie-Bohm theory, after its originators de Broglie and Bohm), a system is described by certain variables in space-time such as particles or fields or something else, whose dynamics depends on the wave function. In the context of quantum gravity, these variables are a space-time metric and suitable variable for the matter fields (e.g., particles or fields). In addition to solving the conceptual problems, the Bohmian approach yields new applications and predictions in quantum cosmology. These include space-time singularity resolution, new types of semi-classical approximations to quantum gravity, and approximations for quantum perturbations moving in a quantum background.
I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological role of a vector field in the framework of a string/brane cosmological model. I will then present the resolu
We construct a generalized class of quantum gravity condensate states, that allows the description of continuum homogeneous quantum geometries within the full theory. They are based on similar ideas already applied to extract effective cosmological d
We show that, by using resummation techniques based on the extension of the methods of Yennie, Frautschi and Suura to Feynmans formulation of Einsteins theory, we get quantum field theoretic predictions for the UV fixed-point values of the dimensionl
Quantum illumination is a quantum sensing technique where entanglement is exploited to improve the detection of low-reflectivity targets in a strong thermal background. In this paper, we study the quantum illumination of suspected targets under the c
Experiments have recently been proposed testing whether quantum gravitational interactions generate entanglement between adjacent masses in position superposition states. We propose potentially less challenging experiments that test quantum gravity a