ﻻ يوجد ملخص باللغة العربية
In this work, we study a family of non-Markovian trees modeling populations where individuals live and reproduce independently with possibly time-dependent birth-rate and lifetime distribution. To this end, we use the coding process introduced by Lambert. We show that, in our situation, this process is no longer a L{e}vy process but remains a Feller process and we give a complete characterization of its generator. This allows us to study the model through well-known Markov processes techniques. On one hand, introducing a scale function for such processes allows us to get necessary and sufficient conditions for extinction or non-extinction and to characterize the law of such trees conditioned on these events. On the other hand, using Lyapounov drift techniques , we get another set of, easily checkable, sufficient criteria for extinction or non-extinction and some tail estimates for the tree length. Finally, we also study scaling limits of such random trees and observe that the Bessel tree appears naturally.
For a bosonic (fermionic) open system in a bath with many bosons (fermions) modes, we derive the exact non-Markovian master equation in which the memory effect of the bath is reflected in the time dependent decay rates. In this approach, the reduced
Characterisation protocols have so far played a central role in the development of noisy intermediate-scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to continue in building the next generation of devic
Non-Markovian processes are widespread in natural and human-made systems, yet explicit model- ling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy t
We present a computational model to reconstruct trees of ancestors for animals with sexual reproduction. Through a recursive algorithm combined with a random number generator, it is possible to reproduce the number of ancestors for each generation an
We study non-Markovian stochastic epidemic models (SIS, SIR, SIRS, and SEIR), in which the infectious (and latent/exposing, immune) periods have a general distribution. We provide a representation of the evolution dynamics using the time epochs of in