ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Energy Survey Data Release 1

90   0   0.0 ( 0 )
 نشر من قبل Matias Carrasco Kind
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single epoch images, coadded images, coadded source catalogs, and associated products and services assembled over the first three years of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (August 2013 to February 2016) by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ~5,000 sq. deg. of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of g = 1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.90 arcsec FWHM, a photometric precision of < 1% in all bands, and an astrometric precision of 151 mas. The median coadded catalog depth for a 1.95 diameter aperture at S/N = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 mag. DES DR1 includes nearly 400M distinct astronomical objects detected in ~10,000 coadd tiles of size 0.534 sq. deg. produced from ~39,000 individual exposures. Benchmark galaxy and stellar samples contain ~310M and ~ 80M objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive coadd image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.

قيم البحث

اقرأ أيضاً

We present the second public data release of the Dark Energy Survey, DES DR2, based on optical/near-infrared imaging by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. DES DR2 consists o f reduced single-epoch and coadded images, a source catalog derived from coadded images, and associated data products assembled from 6 years of DES science operations. This release includes data from the DES wide-area survey covering ~5000 deg2 of the southern Galactic cap in five broad photometric bands, grizY. DES DR2 has a median delivered point-spread function full-width at half maximum of g= 1.11, r= 0.95, i= 0.88, z= 0.83, and Y= 0.90 arcsec photometric uniformity with a standard deviation of < 3 mmag with respect to Gaia DR2 G-band, a photometric accuracy of ~10 mmag, and a median internal astrometric precision of ~27 mas. The median coadded catalog depth for a 1.95 arcsec diameter aperture at S/N= 10 is g= 24.7, r= 24.4, i= 23.8, z= 23.1 and Y= 21.7 mag. DES DR2 includes ~691 million distinct astronomical objects detected in 10,169 coadded image tiles of size 0.534 deg2 produced from 76,217 single-epoch images. After a basic quality selection, benchmark galaxy and stellar samples contain 543 million and 145 million objects, respectively. These data are accessible through several interfaces, including interactive image visualization tools, web-based query clients, image cutout servers and Jupyter notebooks. DES DR2 constitutes the largest photometric data set to date at the achieved depth and photometric precision.
The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R~22,500 300-fiber spectrograph covering 1.514--1.696 microns. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 square degrees.
This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey on the 8.2 meter Subaru Telescope. The release includes data from 174 nights of observation through January 2018. The W ide layer data cover about 300 deg^2 in all five broadband filters (grizy) to the nominal survey exposure (10min in gr and 20min in izy). Partially observed areas are also included in the release; about 1100 deg^2 is observed in at least one filter and one exposure. The median seeing in the i-band is 0.6 arcsec, demonstrating the superb image quality of the survey. The Deep (26 deg^2) and UltraDeep (4 deg^2) data are jointly processed and the UltraDeep-COSMOS field reaches an unprecedented depth of i~28 at 5 sigma for point sources. In addition to the broad-bands, narrow-band data are also available in the Deep and UltraDeep fields. This release includes a major update to the processing pipeline, including improved sky subtraction, PSF modeling, object detection, and artifact rejection. The overall data quality has been improved, but this release is not without problems; there is a persistent deblender problem as well as new issues with masks around bright stars. The user is encouraged to review the issue list before utilizing the data for scientific explorations. All the image products as well as catalog products are available for download. The catalogs are also loaded to a database, which provides an easy interface for users to retrieve data for objects of interest. In addition to these main data products, detailed galaxy shape measurements withheld from the Public Data Release 1 (PDR1) are now available to the community. The shape catalog is drawn from the S16A internal release, which has a larger area than PDR1 (160 deg^2). All products are available at the data release site, https://hsc-release.mtk.nao.ac.jp/.
The paper presents the third data release of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP), a wide-field multi-band imaging survey with the Subaru 8.2m telescope. HSC-SSP has three survey layers (Wide, Deep, and UltraDeep) with different area coverages and depths, designed to address a wide array of astrophysical questions. This third release from HSC-SSP includes data from 278 nights of observing time and covers about 670 square degrees in all five broad-band filters at the full depth ($sim26$~mag at $5sigma$) in the Wide layer. If we include partially observed area, the release covers 1,470 square degrees. The Deep and UltraDeep layers have $sim80%$ of the originally planned integration times, and are considered done, as we have slightly changed the observing strategy in order to compensate for various time losses. There are a number of updates in the image processing pipeline. Of particular importance is the change in the sky subtraction algorithm; we subtract the sky on small scales before the detection and measurement stages, which has significantly reduced false detections. Thanks to this and other updates, the overall quality of the processed data has improved since the previous release. However, there are limitations in the data (for example, the pipeline is not optimized for crowded fields), and we encourage the user to check the quality assurance plots as well as a list of known issues before exploiting the data. The data release website is https://hsc-release.mtk.nao.ac.jp/.
We present the status of the Dark Energy Spectroscopic Instrument (DESI) and its plans and opportunities for the coming decade. DESI construction and its initial five years of operations are an approved experiment of the US Department of Energy and i s summarized here as context for the Astro2020 panel. Beyond 2025, DESI will require new funding to continue operations. We expect that DESI will remain one of the worlds best facilities for wide-field spectroscopy throughout the decade. More about the DESI instrument and survey can be found at https://www.desi.lbl.gov.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا