ﻻ يوجد ملخص باللغة العربية
Given a vector function ${bf F}=(F_1,ldots,F_d),$ analytic on a neighborhood of some compact subset $E$ of the complex plane with simply connected complement, we define a sequence of vector rational functions with common denominator in terms of the expansions of the components $F_k, k=1,ldots,d,$ with respect to the sequence of Faber polynomials associated with $E$. Such sequences of vector rational functions are analogous to row sequences of type II Hermite-Pade approximation. We give necessary and sufficient conditions for the convergence with geometric rate of the common denominators of the sequence of vector rational functions so constructed. The exact rate of convergence of these denominators is provided and the rate of convergence of the approximants is estimated. It is shown that the common denominators of the approximants detect the poles of the system of functions closest to $E$ and their order.
We consider row sequences of vector valued Pad{e}-Faber approximants (simultaneous Pad{e}-Faber approximants) and prove a Montessus de Ballore type theorem.
Given a system of functions f = (f1, . . . , fd) analytic on a neighborhood of some compact subset E of the complex plane, we give necessary and sufficient conditions for the convergence with geometric rate of the common denominators of multipoint He
Starting from the orthogonal polynomial expansion of a function $F$ corresponding to a finite positive Borel measure with infinite compact support, we study the asymptotic behavior of certain associated rational functions (Pad{e}-orthogonal approxima
We give necessary and sufficient conditions for the convergence with geometric rate of the denominators of linear Pade-orthogonal approximants corresponding to a measure supported on a general compact set in the complex plane. Thereby, we obtain an a
Let $f$ be a power series with positive radius of convergence. In the present paper, we study the phenomenon of overconvergence of sequences of classical Pade approximants pi{n,m_n} associated with f, where m(n)<=m(n+1)<=m(n) and m(n) = o(n/log n), r