ﻻ يوجد ملخص باللغة العربية
We present a photometric study of the dwarf galaxy population in the core region ($< r_{rm vir}/4$) of the Fornax galaxy cluster based on deep $ugi$ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4-meter Blanco telescope at the Cerro-Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities $-17 < M_{g} < -8$ mag, corresponding to typical stellar masses of $9.5gtrsim log{cal M}_{star}/M_odot gtrsim 5.5$, reaching $sim!3$ mag deeper in point-source luminosity and $sim!4$ mag deeper in surface-brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that surface-brightness profiles are well represented by single-component Sersic models with average Sersic indices of $langle nrangle_{u,g,i}=(0.78-0.83) pm 0.02$, and average effective radii of $langle r_erangle_{u,g,i}!=(0.67-0.70) pm 0.02$ kpc. Color-magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass-metallicity relation reveals that the average faint dwarf galaxy is likely older than ~5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: i) dwarf galaxies assemble mass inside the half-mass radius up to $log{cal M}_{star}$ ~8.0, ii) isometric mass assembly in the range $8.0 < log{cal M}_{star}/M_odot < 10.5$, and iii) massive galaxies assemble stellar mass predominantly in their halos at $log{cal M}_{star}$ ~10.5 and above.
Using the photometric data from the Next Generation Fornax Survey, we find a significant radial alignment signal among the Fornax dwarf galaxies. For the first time, we report that the radial alignment signal of nucleated dwarfs is stronger than that
Clues to the formation and evolution of Nuclear Star Clusters (NSCs) lie in their stellar populations. However, these structures are often very faint compared to their host galaxy, and spectroscopic analysis of NSCs is hampered by contamination of li
We report the detection of a pair of dwarf galaxies at $z!=!0.30$ which may be in the early stages of an interaction. Both galaxies have stellar masses of $<10^{9}M_odot$, and display a projected separation of $sim!29$kpc and a physical separation of
We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded $u, g$ and $i$-band image obtained with the DECam wide-field camera mounted on the 4-meter Blanco telescope at the Cerro To
We use three different techniques to identify hundreds of white dwarf (WD) candidates in the Next Generation Virgo Cluster Survey (NGVS) based on photometry from the NGVS and GUViCS, and proper motions derived from the NGVS and the Sloan Digital Sky