ترغب بنشر مسار تعليمي؟ اضغط هنا

Variations of the stellar initial mass function in semi-analytical models II: the impact of Cosmic Ray regulation

80   0   0.0 ( 0 )
 نشر من قبل Fabio Fontanot
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabio Fontanot




اسأل ChatGPT حول البحث

Recent studies proposed that cosmic rays (CR) are a key ingredient in setting the conditions for star formation, thanks to their ability to alter the thermal and chemical state of dense gas in the UV-shielded cores of molecular clouds. In this paper, we explore their role as regulators of the stellar initial mass function (IMF) variations, using the semi-analytic model for GAlaxy Evolution and Assembly (GAEA). The new model confirms our previous results obtained using the integrated galaxy-wide IMF (IGIMF) theory: both variable IMF models reproduce the observed increase of $alpha$-enhancement as a function of stellar mass and the measured $z=0$ excess of dynamical mass-to-light ratios with respect to photometric estimates assuming a universal IMF. We focus here on the mismatch between the photometrically-derived ($M^{rm app}_{star}$) and intrinsic ($M_{star}$) stellar masses, by analysing in detail the evolution of model galaxies with different values of $M_{star}/M^{rm app}_{star}$. We find that galaxies with small deviations (i.e. formally consistent with a universal IMF hypothesis) are characterized by more extended star formation histories and live in less massive haloes with respect to the bulk of the galaxy population. While the IGIMF theory does not change significantly the mean evolution of model galaxies with respect to the reference model, a CR-regulated IMF implies shorter star formation histories and higher peaks of star formation for objects more massive than $10^{10.5} M_odot$. However, we also show that it is difficult to unveil this behaviour from observations, as the key physical quantities are typically derived assuming a universal IMF.

قيم البحث

اقرأ أيضاً

87 - Fabio Fontanot 2019
A wealth of observations recently challenged the notion of a universal stellar initial mass function (IMF) by showing evidences in favour of a variability of this statistical indicator as a function of galaxy properties. I present predictions from th e semi-analytic model GAEA (GAlaxy Evolution and Assembly), which features (a) a detailed treatment of chemical enrichment, (b) an improved stellar feedback scheme, and (c) implements theoretical prescriptions for IMF variations. Our variable IMF realizations predict intrinsic stellar masses and mass-to-light ratios larger than those estimated from synthetic photometry assuming a universal IMF. This provides a self-consistent interpretation for the observed mismatch between photometrically inferred stellar masses of local early-type galaxies and those derived by dynamical and spectroscopic studies. At higher redshifts, the assumption of a variable IMF has a deep impact on our ability to reconstruct the evolution of the galaxy stellar mass function and the star formation history of galaxies.
81 - Fabio Fontanot 2016
In this work, we investigate the implications of the Integrated Galaxy-wide stellar Initial Mass Function (IGIMF) approach in the framework of the semi-analytic model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemic al enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [$alpha$/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of $alpha$-enhancement with stellar mass, in agreement with previous studies. This is mainly due to the fact that massive galaxies are characterized by larger star formation rates at high-redshift, leading to stronger $alpha$-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation timescales for more massive galaxies. We argue that in the IGIMF scenario the [$alpha$/Fe] ratios are good tracers of the highest star formation events. The final stellar masses and mass-to-light-ratio of our model massive galaxies are larger than those estimated from the synthetic photometry assuming a universal IMF, providing a self-consistent interpretation of similar recent results, based on dynamical analysis of local early type galaxies.
We argue that an increased temperature in star-forming clouds alters the stellar initial mass function to be more bottom-light than in the Milky Way. At redshifts $z gtrsim 6$, heating from the cosmic microwave background radiation produces this effe ct in all galaxies, and it is also present at lower redshifts in galaxies with very high star formation rates (SFRs). A failure to account for it means that at present, photometric template fitting likely overestimates stellar masses and star formation rates for the highest-redshift and highest-SFR galaxies. In addition this may resolve several outstanding problems in the chemical evolution of galactic halos.
355 - Fabio Fontanot 2018
In this paper, we present a new derivation of the shape and evolution of the integrated galaxy-wide initial mass function (IGIMF), incorporating explicitly the effects of cosmic rays (CRs) as regulators of the chemical and thermal state of the gas in the dense cores of molecular clouds. We predict the shape of the IGIMF as a function of star formation rate (SFR) and CR density, and show that it can be significantly different with respect to local estimates. In particular, we focus on the physical conditions corresponding to IGIMF shapes that are simultaneously shallower at high-mass end and steeper at the low-mass end than a Kroupa IMF. These solutions can explain both the levels of $alpha$-enrichment and the excess of low-mass stars as a function of stellar mass, observed for local spheroidal galaxies. As a preliminary test of our scenario, we use idealized star formation histories to estimate the mean IMF shape for galaxies of different $z=0$ stellar mass. We show that the fraction of low-mass stars as a function of galaxy stellar mass predicted by these mean IMFs agrees with the values derived from high-resolution spectroscopic surveys.
We present a comparison of the observed evolving galaxy stellar mass functions with the predictions of eight semi-analytic models and one halo occupation distribution model. While most models are able to fit the data at low redshift, some of them str uggle to simultaneously fit observations at high redshift. We separate the galaxies into passive and star-forming classes and find that several of the models produce too many low-mass star-forming galaxies at high redshift compared to observations, in some cases by nearly a factor of 10 in the redshift range $2.5 < z < 3.0$. We also find important differences in the implied mass of the dark matter haloes the galaxies inhabit, by comparing with halo masses inferred from observations. Galaxies at high redshift in the models are in lower mass haloes than suggested by observations, and the star formation efficiency in low-mass haloes is higher than observed. We conclude that many of the models require a physical prescription that acts to dissociate the growth of low-mass galaxies from the growth of their dark matter haloes at high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا