ﻻ يوجد ملخص باللغة العربية
Shock revival in core-collapse supernovae (CCSNe) may be due to the neutrino mechanism. While it is known that in a neutrino-powered CCSN, explosion begins when the neutrino luminosity of the proto-neutron star exceeds a critical value, the physics of this condition in time-dependent, multidimensional simulations are not fully understood. citet{Pejcha2012} found that an `antesonic condition exists for time-steady spherically symmetric models, potentially giving a physical explanation for the critical curve observed in simulations. In this paper, we extend that analysis to time-dependent, spherically symmetric polytropic models. We verify the critical antesonic condition in our simulations, showing that models exceeding it drive transonic winds whereas models below it exhibit steady accretion. In addition, we find that (1) high spatial resolution is needed for accurate determination of the antesonic ratio and shock radius at the critical curve, and that low resolution simulations systematically underpredict these quantities, making explosion more difficult at lower resolution; (2) there is an important physical connection between the critical mass accretion rate at explosion and the mass loss rate of the post-explosion wind: the two are directly proportional at criticality, implying that, at criticality, the wind kinetic power is tied directly to the accretion power; (3) the value of the post-shock adiabatic index $Gamma$ has a large effect on the length and time scales of the post-bounce evolution of the explosion larger values of $Gamma$ result in a longer transition from the accretion to wind phases.
Recent multi-dimensional simulations of core-collapse supernovae are producing successful explosions and explosion-energy predictions. In general, the explosion-energy evolution is monotonic and relatively smooth, suggesting a possible analytic solut
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev
Core-collapse supernovae are among Natures most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of gal
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using t
We investigate the explosion of stars with zero-age main-sequence masses between 20 and 35 solar masses and varying degrees of rotation and magnetic fields including ones commonly considered progenitors of gamma-ray bursts (GRBs). The simulations, co