ﻻ يوجد ملخص باللغة العربية
In this paper we generalize the dynamical systems analysis of the cubic galileon model previously investigated in cite{rtgui} by including self-interaction potentials beyond the exponential one. It will be shown that, consistently with the results of cite{rtgui}, the cubic self-interaction of the galileon vacuum appreciably modifies the late-time cosmic dynamics by the existence of a phantom-like attractor (among other super-accelerated solutions that are not of interest in the present investigation). In contrast, in the presence of background matter the late-time cosmic dynamics remains practically the same as in the standard quintessence scenario. This means that we can not recover the cubic galileon vacuum continuously from the more general cubic quintessence with background matter, by setting to zero the matter energy density (and the pressure). This happens to be a kind of cosmological vDVZ discontinuity that can be evaded by means of the cosmological version of the Vainshtein screening mechanism.
Recently a cubic Galileon cosmological model was derived by the assumption that the field equations are invariant under the action of point transformations. The cubic Galileon model admits a second conservation law which means that the field equation
Cubic Galileon massive gravity is a development of de Rham-Gabadadze-Tolly (dRGT) massive gravity theory is which the space of the Stueckelberg field is broken. We consider the cubic Galileon term as a scalar field coupled to the graviton filed. We p
In this paper we apply the tools of the dynamical systems theory in order to uncover the whole asymptotic structure of the vacuum interactions of a galileon model with a cubic derivative interaction term. It is shown that, contrary to what occurs in
In this paper, we present the cosmological scenario obtained from $f(R,T)$ gravity by using an exponential dependence on the trace of the energy-momentum tensor. With a numerical approach applied to the equations of motion, we show several precise fi
We investigate a cosmological model in which dark energy identified with the vacuum energy which is running and decaying. In this model vacuum is metastable and decays into a bare (true) vacuum. This decaying process has a quantum nature and is descr