ﻻ يوجد ملخص باللغة العربية
The correlation between the transport properties and structural degrees of freedom of conducting polymers is a central concern in both practical applications and scientific research. In this study, we demonstrated the existence of mesoscopic two-dimensional (2D) coherent charge transport in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film by performing structural investigations and high-field magnetoconductance (MC) measurements in magnetic fields of up to 15 T. We succeeded in observing marked positive MCs reflecting 2D electronic states in a conventional drop-cast film. This low-dimensional feature is surprising, since PEDOT:PSS-a mixture of two different polymers-seems to be significantly different from crystalline 2D materials in the viewpoint of the structural inhomogeneity, especially in popular drop-cast thick films. The results of the structural experiments suggest that such 2D transport originates from the nanometer-scale self-assembled laminated structure, which is composed of PEDOT nanocrystals wrapped by insulating sheets consisting of amorphous PSSs. These results indicate that charge transport in the PEDOT:PSS film can be divided into two regimes: mesoscopic 2D coherent tunneling and macroscopic three-dimensional hopping among 2D states. Our findings elucidate the hieratical nature of charge transport in the PEDOT:PSS film, which could provide new insight into a recent engineering concern, i.e., the anisotropic conductance.
The spectacular metal-to-insulator transition of V2O3 can be progressively suppressed in thin film samples. Evidence for phase separation was observed using microbridges as a mesoscopic probe of transport properties where the same film possesses doma
Nonequilibrium charge transport in superconductors has been investigated intensely in the 1970s and 80s, mostly in the vicinity of the critical temperature. Much less attention has been focussed on low temperatures, and the role of the quasiparticle
In view of their immensely intriguing properties, two dimensional materials are being intensely researched in search of novel phenomena and diverse application interests, however, studies on the realization of nanocomposites in the application-worthy
The origin of p-type conductivity and the mechanism responsible for low carrier mobility was investigated in pyrite (FeS2) thin films. Temperature dependent resistivity measurements were performed on polycrystalline and nanostructured thin films prep
Using electrically detected magnetic resonance spectroscopy, we demonstrate that doping the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) with ethylene glycol allows for the control of effective local charge