ﻻ يوجد ملخص باللغة العربية
We present the result of the in-flight calibration of the effective area of the Soft X-ray Spectrometer (SXS) onboard the Hitomi X-ray satellite using an observation of the Crab nebula. We corrected for the artifacts when observing high count rate sources with the X-ray microcalorimeter. We then constructed a spectrum in the 0.5-20 keV band, which we modeled with a single power-law continuum attenuated by an interstellar extinction. We evaluated the systematic uncertainty upon the spectral parameters by various calibration items. In the 2-12 keV band, the SXS result is consistent with the literature values in flux (2.20 $pm$ 0.08) $times$10$^{-8}$ erg s$^{-1}$ cm$^{-2}$ with a 1$sigma$ statistical uncertainty) but is softer in the power-law index (2.19 $pm$ 0.11). The discrepancy is attributable to the systematic uncertainty of about $+$6/$-$7% and $+$2/$-$5% respectively for the flux and the power-law index. The softer spectrum is affected primarily by the systematic uncertainty of the Dewar gate valve transmission and the event screening.
We present results of inflight calibration of the point spread function (PSF) of the Soft X-ray Telescope (SXT-S) that focuses X-ray onto the pixel array of the Soft X-ray Spectrometer system (SXS). We make a full array image of a point-like source b
The NASA/ASI Imaging X-ray Polarimetry Explorer, which will be launched in 2021, will be the first instrument to perform spatially resolved X-ray polarimetry on several astronomical sources in the 2-8 keV energy band. These measurements are made poss
We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1
We describe a process for cross-calibrating the effective areas of X-ray telescopes that observe common targets. The targets are not assumed to be standard candles in the classic sense, in that we assume that the source fluxes have well-defined, but
The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 A.D. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core collapse SN. Intensive searches