ﻻ يوجد ملخص باللغة العربية
The Cassini spacecraft found a new and unique ring that shares the trajectory of Janus and Epimetheus, co-orbital satellites of Saturn. Performing image analysis, we found this to be a continuous ring. Its width is between 30% and 50% larger than previously announced. We also verified that the ring behaves like a firefly. It can only be seen from time to time, when Cassini, the ring and the Sun are arranged in a particular geometric configuration, in very high phase angles. Otherwise, it remains in the dark, not visible to Cassinis cameras. Through numerical simulations, we found a very short lifetime for the ring particles, less than a couple of decades. Consequently, the ring needs to be constantly replenished. Using a model of particles production due to micrometeorites impacts on the surfaces of Janus and Epimetheus, we reproduce the ring, explaining its existence and the firefly behavior.
We present an analytical model to study the dynamics of the outer edge of Saturns A ring. The latter is influenced by 7:6 mean motion resonances with Janus and Epimetheus. Because of the horseshoe motion of the two co-orbital moons, the ring edge par
Planets close to their stars are thought to form farther out and migrate inward due to angular momentum exchange with gaseous protoplanetary disks. This process can produce systems of planets in co-orbital (Trojan or 1:1) resonance, in which two plan
We consider reshaping of closed Janus filaments acquiring intrinsic curvature upon actuation of an active component -- a nematic elastomer elongating upon phase transition. Linear stability analysis establishes instability thresholds of circles with
The G ring arc hosts the smallest satellite of Saturn, Aegaeon, observed with a set of images sent by Cassini spacecraft. Along with Aegaeon, the arc particles are trapped in a 7:6 corotation eccentric resonance with the satellite Mimas. Due to this
Thermodynamically, bosons and fermions differ by their statistics only. A general entropy functional is proposed by superposition of entropic terms, typical for different quantum gases. The statistical properties of the corresponding Janus particles