ﻻ يوجد ملخص باللغة العربية
In this work, we studied amorphous carbon ($a$-C) thin films deposited using direct current (dc) and high power impulse magnetron sputtering (HiPIMS) techniques. The microstructure and electronic properties reveal subtle differences in $a$-C thin films deposited by two techniques. While, films deposited with dcMS have a smooth texture typically found in $a$-C thin films, those deposited with HiPIMS consist of dense hillocks surrounded by a porous microstructure. The density of $a$-C thin films is a decisive parameter to judge their quality. Often, x-ray reflectivity (XRR) has been used to measure the density of carbon thin films. From the present work, we find that determination of density of carbon thin films, specially those with a thickness of few tens of nm, may not be accurate with XRR due to a poor scattering contrast between the film and substrate. By utilizing neutron reflectivity (NR) in the time of flight mode, a technique not commonly used for carbon thin films, we could accurately measure differences in the densities of $a$-C thin films deposited using dcMS and HiPIMS.
We correlate simultaneously recorded magnetotransport and spatially resolved magneto optical Kerr effect (MOKE) data in Co2FeAl Heusler compound thin films micropatterned into Hall bars. Room temperature MOKE images reveal the nucleation and propagat
Wide-bandgap perovskite stannates are of interest for the emergent all-oxide transparent electronic devices due to their unparalleled room temperature electron mobility. Considering the advantage of amorphous material in integrating with non-semicond
We show that separating metallic from semiconducting carbon nanotubes by dielectrophoresis is developing towards a bulk separation method, which allows for the first time to produce thin films of only metallic single-walled carbon nanotubes and to me
The prediction of ferromagnetism at room temperature in Co-ZnO thin films has generated a large interest in the community due to the possible applications. However, the results are controversial, going from ferromagnetism to non-ferromagnetism, leadi
Describing the origin of uniaxial magnetic anisotropy (UMA) is generally problematic in systems other than single crystals. We demonstrate an in-plane UMA in amorphous CoFeB films on GaAs(001) which has the expected symmetry of the interface anisotro