ﻻ يوجد ملخص باللغة العربية
We present the molecular cloud properties of N55 in the Large Magellanic Cloud using $^{12}$CO(1-0) and $^{13}$CO(1-0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have YSOs show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the $^{12}$CO and $^{13}$CO emissions. These mass estimates lead to the conclusion that, (a) the clumps are in self-gravitational virial equilibrium, and (b) the $^{12}$CO(1-0)-to-H$_2$ conversion factor, X$_{rm CO}$, is 6.5$times$10$^{20}$cm$^{-2}$(K km s$^{-1}$)$^{-1}$. This CO-to-H$_2$ conversion factor for N55 clumps is measured at a spatial scale of $sim$0.67 pc, which is about two times higher than the X$_{rm CO}$ value of Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200M$_{odot}$, separating the low-mass end from the high-mass end. The low-mass end of the $^{12}$CO mass spectrum is fitted with a power law of index 0.5$pm$0.1, while for $^{13}$CO it is fitted with a power law index 0.6$pm$0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0$pm$0.3 for $^{12}$CO, and with 2.5$pm$0.4 for $^{13}$CO. This power-law behavior of the core mass function in N55 is consistent with many Galactic clouds.
We present the results of Atacama Large Millimeter/submillimeter Array (ALMA) observation in $^{12}$CO(1-0) emission at 0.58 $times$ 0.52 pc$^2$ resolution toward the brightest HII region N66 of the Small Magellanic Cloud (SMC). The $^{12}$CO(1-0) em
We present the results of high spatial resolution HCO$^{+}$($1-0$) and HCN($1-0$) observations of N55 south region (N55-S) in the Large Magellanic Cloud (LMC), obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). N55-S is a relative
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density reg
We investigate the Hi envelope of the young, massive GMCs in the star-forming regions N48 and N49, which are located within the high column density Hi ridge between two kpc-scale supergiant shells, LMC 4 and LMC 5. New long-baseline Hi 21 cm line obs
It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud to search for associate