ﻻ يوجد ملخص باللغة العربية
In the book, I considered differential equations of order $1$ over Banach $D$Hyph algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. I considered examples of differential equations in quaternion algebra. In order to study homogeneous system of linear differential equations, I considered vector space over division $D$-algebra, solving of linear equations over division $D$-algebra and the theory of eigenvalues in non commutative division $D$-algebra.
Let $A$, $B$ be Banach $D$-algebras. The map $f:Arightarrow B$ is called differentiable on the set $Usubset A$, if at every point $xin U$ the increment of map $f$ can be represented as $$f(x+dx)-f(x) =frac{d f(x)}{d x}circ dx +o(dx)$$ where $$frac{d
In this paper, I treat quadratic equation over associative $D$-algebra. In quaternion algebra $H$, the equation $x^2=a$ has either $2$ roots, or infinitely many roots. Since $ain R$, $a<0$, then the equation has infinitely many roots. Otherwise, the
Let $A$ be Banach algebra over commutative ring $D$. The map $f:Arightarrow A $ is called differentiable in the Gateaux sense, if $$f(x+a)-f(x)=partial f(x)circ a+o(a)$$ where the Gateaux derivative $partial f(x)$ of map $f$ is linear map of incremen
Module is effective representation of ring in Abelian group. Linear map of module over commutative ring is morphism of corresponding representation. This definition is the main subject of the book. To consider this definition from more general poin
From the symmetry between definitions of left and right divisors in associative $D$-algebra $A$, the possibility to define quotient as $Aotimes A$-number follows. In the paper, I considered division and division with remainder. I considered also definition of prime $A$-number.