ﻻ يوجد ملخص باللغة العربية
Sr$_2$IrO$_4$ is the archetype of the spin-orbit Mott insulator, but the nature of the metallic states that may emerge from this type of insulator is still not very well known. We study with angle-resolved photoemission the insulator-to-metal transition observed in Sr$_2$Ir$_{1-x}$Rh$_x$O$_4$ when Ir is substituted by Rh (0.02 < $x$ < 0.35). The originality of the Rh doping is that Ir and Rh, which are formally isovalent, adopt different charge states, a rather unusual and inhomogeneous situation. We show that the evolution to the metallic state can be essentially understood as a shift of the Fermi level into the lower Hubbard band of Sr$_2$IrO$_4$. The Mott gap appears quite insensitive to the introduction of up to $sim$20% holes in this band. The metallic phase, which forms for $x$ > 0.07, is not a Fermi liquid. It is characterized by the absence of quasiparticles, unrenormalized band dispersion compared to calculations and an $sim$30-meV pseudo-gap on the entire Fermi surface.
Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping induced insulator to metal transition is still a subject under intensive investigation. Here we probe the nanoscal
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr$_2$IrO$_4$ upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a
The magnetic excitations in electron doped (Sr$_{1-x}$La$_x$)$_2$IrO$_4$ with $x = 0.03$ were measured using resonant inelastic X-ray scattering at the Ir $L_3$-edge. Although much broadened, well defined dispersive magnetic excitations were observed
We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our dat
The effect of compression on the magnetic ground state of Sr$_2$IrO$_4$ is studied with x-ray resonant techniques in the diamond anvil cell. The weak interlayer exchange coupling between square-planar 2D IrO$_2$ layers is readily modified upon compre