ﻻ يوجد ملخص باللغة العربية
In this study, we examine multiple encapsulated graphene Josephson junctions to determine which mechanisms may be responsible for the supercurrent observed in the quantum Hall (QH) regime. Rectangular junctions with various widths and lengths were studied to identify which parameters affect the occurrence of QH supercurrent. We also studied additional samples where the graphene region is extended beyond the contacts on one side, making that edge of the mesa significantly longer than the opposite edge. This is done in order to distinguish two potential mechanisms: a) supercurrents independently flowing along both non-contacted edges of graphene mesa, and b) opposite sides of the mesa being coupled by hybrid electron-hole modes flowing along the superconductor/graphene boundary. The supercurrent appears suppressed in extended junctions, suggesting the latter mechanism.
Coupling superconductors to quantum Hall edge states is the subject of intense investigation as part of the ongoing search for non-abelian excitations. Our group has previously observed supercurrents of hundreds of picoamperes in graphene Josephson j
We investigate the electronic properties of ballistic planar Josephson junctions with multiple superconducting terminals. Our devices consist of monolayer graphene encapsulated in boron nitride with molybdenum-rhenium contacts. Resistance measurement
We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheet deposited by superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer, the Josephson current
Semiconductor-superconductor hybrid systems provide a promising platform for hosting unpaired Majorana fermions towards the realisation of fault-tolerant topological quantum computing. In this study, we employ the Keldysh Non-Equilibrium Greens funct
We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors