ﻻ يوجد ملخص باللغة العربية
We provide a detailed analysis of a realization of chiral gapless edge modes in the framework of the Hofstadter model of interacting electrons. In a transverse homogeneous magnetic field and a rational magnetic flux through an unit cell the fermion spectrum splits into topological subbands with well-defined Chern numbers, contains gapless edge modes in the gaps. It is shown that the behavior of gapless edge modes is described within the framework of the Kitaev chain where the tunneling of Majorana fermions is determined by effective hopping of Majorana fermions between chains. The proposed approach makes it possible to study the fermion spectrum in the case of an irrational flux, to calculate the Hall conductance of subbands that form a fine structure of the spectrum. In the case of a rational flux and a strong on-site Hubbard interaction $U$, $ U >4 Delta $ ($ Delta $ is a gap), the topological state of the system, which is determined by the corresponding Chern number and chiral gapless edge modes, collapses. When the magnitude of the on-site Hubbard interaction changes, at the point $ U = 4 Delta $ a topological phase transition is realized, i.e., there are changes in the Chern numbers of two subbands due to their degeneration.
The energy spectrum of the Hofstadter model has a fractal structure with infinitely many gaps. We prove the persistence of each gap in presence of Hubbard interaction in the case of small transversal hopping, even when the coupling is much larger tha
Applying a unified approach, we study integer quantum Hall effect (IQHE) and fractional quantum Hall effect (FQHE) in the Hofstadter model with short range interaction between fermions. An effective field, that takes into account the interaction, is
Certain periodically driven quantum many-particle systems in one dimension are known to exhibit edge modes that are related to topological properties and lead to approximate degeneracies of the Floquet spectrum. A similar situation occurs in spin cha
Floquet spin chains have been a venue for understanding topological states of matter that are qualitatively different from their static counterparts by, for example, hosting $pi$ edge modes that show stable period-doubled dynamics. However the stabil
By taking into account the possibility of all the intralayer as well as the interlayer current orderings, we derive an eight-band model for interacting electrons in bilayer graphene. With the numerical solution to the model, we show that only the cur