ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Template Uncertainties on the WMAP and Planck Measures of the Optical Depth Due To Reionization

70   0   0.0 ( 0 )
 نشر من قبل Janet L. Weiland
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The reionization optical depth is the most poorly determined of the six $Lambda$CDM parameters fit to CMB anisotropy data. Instrumental noise and systematics have prevented uncertainties from reaching their cosmic variance limit. At present, the datasets providing the most statistical constraining power are the WMAP, Planck LFI, and Planck HFI full-sky polarization maps. As the reprocessed HFI data with reduced systematics are not yet publicly unavailable, we examine determinations of $tau$ using 9-year WMAP and 2015 Planck LFI data, with an emphasis on characterizing potential systematic bias resulting from foreground template and masking choices. We find evidence for a low-level systematic in the LFI polarization data with a roughly common-mode morphology across the LFI frequencies and a spectrum consistent with leakage of intensity signal into the polarization channels. We demonstrate significant bias in the optical depth derived when using the LFI 30 GHz map as a template to clean synchrotron from WMAP data, and recommend against use of the 2015 LFI 30 GHz polarization data as a foreground template for non-LFI datasets. We find an inconsistency betwe



قيم البحث

اقرأ أيضاً

This paper explores methods for constructing low multipole temperature and polarisation likelihoods from maps of the cosmic microwave background anisotropies that have complex noise properties and partial sky coverage. We use Planck 2018 High Frequen cy Instrument (HFI) and updated SRoll2 temperature and polarisation maps to test our methods. We present three likelihood approximations based on quadratic cross spectrum estimators: (i) a variant of the simulation-based likelihood (SimBaL) techniques used in the Planck legacy papers to produce a low multipole EE likelihood; (ii) a semi-analytical likelihood approximation (momento) based on the principle of maximum entropy; (iii) a density-estimation `likelihood-free scheme (DELFI). Approaches (ii) and (iii) can be generalised to produce low multipole joint temperature-polarisation (TTTEEE) likelihoods. We present extensive tests of these methods on simulations with realistic correlated noise. We then analyse the Planck data and confirm the robustness of our method and likelihoods on multiple inter- and intra-frequency detector set combinations of SRoll2 maps. The three likelihood techniques give consistent results and support a low value of the optical depth to reoinization, tau, from the HFI. Our best estimate of tau comes from combining the low multipole SRoll2 momento (TTTEEE) likelihood with the CamSpec high multipole likelihood and is tau = 0.0627+0.0050-0.0058. This is consistent with the SRoll2 teams determination of tau, though slightly higher by 0.5 sigma, mainly because of our joint treatment of temperature and polarisation.
We compute the expected sensitivity on measurements of optical depth to reionization for a ground-based experiment at Teide Observatory. We simulate polarized partial sky maps for the GroundBIRD experiment at the frequencies 145 and 220 GHz. We perfo rm fits for the simulated maps with our pixel-based likelihood to extract the optical depth to reionization. The noise levels of polarization maps are estimated as 110 $mumathrm{K~arcmin}$ and 780 $ mumathrm{K~arcmin}$ for 145 and 220 GHz, respectively, by assuming a three-year observing campaign and sky coverages of 0.537 for 145 GHz and 0.462 for 220 GHz. Our sensitivities for the optical depth to reionization are found to be $sigma_tau$=0.030 with the simulated GroundBIRD maps, and $sigma_tau$=0.012 by combining with the simulated QUIJOTE maps at 11, 13, 17, 19, 30, and 40 GHz.
We present an estimation of the reionization optical depth $tau$ from an improved analysis of the High Frequency Instrument (HFI) data of Planck satellite. By using an improved version of the HFI map-making code, we greatly reduce the residual large scale contamination affecting the data, characterized, but not fully removed, in the Planck 2018 legacy release. This brings the dipole distortion systematic effect, contaminating the very low multipoles, below the noise level. On large scale polarization only data, we measure $tau=0.0566_{-0.0062}^{+0.0053}$ at $68%$ C.L., reducing the Planck 2018 legacy release uncertainty by $sim40%$. Within the $Lambda$CDM model, in combination with the Planck large scale temperature likelihood, and the high-$ell$ temperature and polarization likelihood, we measure $tau=0.059pm0.006$ at $68%$ C.L. which corresponds to a mid-point reionization redshift of $z_{rm re}=8.14pm0.61$ at $68%$ C.L.. This estimation of the reionization optical depth with $10%$ accuracy is the strongest constraint to date.
CMB full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the northern and southern Ecliptic hemispheres, with the north displa ying an anomalously low variance while the south appears consistent with expectations from the best-fitting theory, LCDM. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. Even though temperature and polarization are correlated, polarization realizations constrained by temperature data show that the lack of variance is not expected to be present in polarization data. Therefore, a natural way of testing whether the temperature result is a fluke is to measure the variance of CMB polarization components. In anticipation of future CMB experiments that will allow for high-precision large-scale polarization measurements, we study how variance of polarization depends on LCDM parameters uncertainties by forecasting polarization maps with Plancks MCMC chains. We find that, unlike temperature variance, polarization variance is noticeably sensitive to present uncertainties in cosmological parameters. This comes mainly from the current poor constraints on the reionization optical depth, tau, and the fact that tau drives variance at low multipoles. In this work we show how the variance of polarization maps generically depends on the cosmological parameters. We demonstrate how the improvement in the tau measurement seen between Plancks two latest data releases results in a tighter constraint on polarization variance expectations. Finally, we consider even smaller uncertainties on tau and how more precise measurements of tau can drive the expectation for polarization variance in a hemisphere close to that of the cosmic-variance-limited distribution.
This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration proce dures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are ear
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا