ترغب بنشر مسار تعليمي؟ اضغط هنا

The Shape and Size distribution of HII Regions near the percolation transition

51   0   0.0 ( 0 )
 نشر من قبل Satadru Bag
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Shapefinders, which are ratios of Minkowski functionals, we study the morphology of neutral hydrogen (HI) density fields, simulated using semi-numerical technique (inside-out), at various stages of reionization. Accompanying the Shapefinders, we also employ the largest cluster statistic (LCS), originally proposed in Klypin and Shandarin (1993), to study the percolation in both neutral and ionized hydrogen. We find that the largest ionized region is percolating below the neutral fraction $x_{HI} lesssim 0.728$ (or equivalently $z lesssim 9$). The study of Shapefinders reveals that the largest ionized region starts to become highly filamentary with non-trivial topology near the percolation transition. During the percolation transition, the first two Shapefinders - thickness ($T$) and breadth ($B$) - of the largest ionized region do not vary much, while the third Shapefinder - length ($L$) - abruptly increases. Consequently, the largest ionized region tends to be highly filamentary and topologically quite complex. The product of the first two Shapefinders, $Ttimes B$, provides a measure of the cross-section of a filament-like ionized region. We find that, near percolation, the value of $Ttimes B$ for the largest ionized region remains stable at $sim 7$ Mpc$^2$ (in comoving scale) while its length increases with time. Interestingly all large ionized regions have similar cross-sections. However their length shows a power-law dependence on their volume, $Lpropto V^{0.72}$, at the onset of percolation.


قيم البحث

اقرأ أيضاً

We present the properties of 8 star-forming regions, or clumps, in 3 galaxies at z~1.3 from the WiggleZ Dark Energy Survey, which are resolved with the OSIRIS integral field spectrograph. Within turbulent discs, sigma~90 km/s, clumps are measured wit h average sizes of 1.5 kpc and average Jeans masses of 4.2 x 10^9 Msolar, in total accounting for 20-30 per cent of the stellar mass of the discs. These findings lend observational support to models that predict larger clumps will form as a result of higher disc velocity dispersions driven-up by cosmological gas accretion. As a consequence of the changes in global environment, it may be predicted that star-forming regions at high redshift should not resemble star-forming regions locally. Yet despite the increased sizes and dispersions, clumps and HII regions are found to follow tight scaling relations over the range z=0-2 for size, velocity dispersion, luminosity, and mass when comparing >2000 HII regions locally and 30 clumps at z>1 (sigma propto r^{0.42+/-0.03}, L(Halpha) propto r^{2.72+/-0.04}, L(Halpha) propto sigma^{4.18+/-0.21}, and L(Halpha) propto M_{Jeans}^{1.24+/-0.05}). We discuss these results in the context of the existing simulations of clump formation and evolution, with an emphasis on the processes that drive-up the turbulent motions in the interstellar medium. Our results indicate that while the turbulence of discs may have important implications for the size and luminosity of regions which form within them, the same processes govern their formation from high redshift to the current epoch.
We report the first results of a long term program aiming to provide accurate independent estimates of the Hubble constant (H0) using the L-sigma distance estimator for Giant extragalactic HII regions (GEHR) and HII galaxies. We have used VLT and S ubaru high dispersion spectroscopic observations of a local sample of HII galaxies, identified in the SDSS DR7 catalogue in order to re-define and improve the L(Hbeta)-sigma distance indicator and to determine the Hubble constant. To this end we utilized as local calibration or `anchor of this correlation, GEHR in nearby galaxies which have accurate distance measurements determined via primary indicators. Using our best sample of 69 nearby HII galaxies and 23 GEHR in 9 galaxies we obtain H0=74.3 +- 3.1 (statistical) +- 2.9 (systematic) km /s Mpc, in excellent agreement with, and independently confirming, the most recent SNe Ia based results.
We present a new, detailed, analysis of the spatial distribution of Galactic HII regions, exploiting a far richer database than used in previous analyses. Galactocentric distances have been derived for 550 objects. Distances from the Sun could be una mbiguously derived from velocity data for 117 of them, lying either outside the solar circle (84) or on a line-of-sight tangential to their orbit (33). For 177 further sources, distance estimates are made possible by the use of auxiliary data. A highly significant correlation between luminosity and linear diameter was found and the corresponding least-square linear relationship in the log-log plane was used to resolve the distance ambiguity for an additional 256 sources. Within the solar circle the thickness of the distribution of HII regions around the Galactic plane was found to be comparable to that of OB stars (Bronfman et al. 2000). At larger galactocentric radii the shape of the distribution reflects that of the warp, and its thickness along the z axis increases with increasing distance from the Galactic centre. We also confirm, for a much larger sample, the previously reported positive gradient of electron temperature with galactocentric distance.
46 - A. Maselli 2006
We investigate the possibility of constraining the ionization state of the intergalactic medium (IGM) close to the end of reionization (z ~ 6) by measuring the size of the HII regions in high-z quasars spectra. We perform a combination of multiphase smoothed particle hydrodynamics (SPH) and 3D radiative transfer (RT) simulations to reliably predict the properties of typical high-z quasar HII regions, embedded in a partly neutral IGM (x_HI=0.1). In this work we assume a fixed configuration for the quasar lifetime and luminosity, i.e. t_Q=10^7 yr and N_gamma=5.2 10^56 s-1. From the analysis of mock spectra along lines of sight through the simulated QSO environment, we find that the HII region size derived from quasar spectra is on average 30 per cent smaller than the physical one. Additional maximum likelihood analysis shows that this offset induces an overestimate of the neutral hydrogen fraction, x_HI, by a factor of 3. By applying the same statistical method to a sample of observed QSOs our study favors a mostly ionized (x_HI < 0.06) universe at z=6.1.
68 - Yan Wu , Shuo Cao , Jia Zhang 2019
Cosmological applications of HII galaxies (HIIGx) and giant extragalactic HII regions (GEHR) to construct the Hubble diagram at higher redshifts require knowledge of the $L$--$sigma$ relation of the standard candles used. In this paper, we study the properties of a large sample of 156 sources (25 high-$z$ HII galaxies, 107 local HII galaxies, and 24 giant extragalactic HII regions) compiled by Terlevich et al.(2015). Using the the cosmological distances reconstructed through two new cosmology-independent methods, we investigate the correlation between the H$beta$ emission-line luminosity $L$ and ionized-gas velocity dispersion $sigma$. The method is based on non-parametric reconstruction using the measurements of Hubble parameters from cosmic clocks, as well as the simulated data of gravitational waves from the third-generation gravitational wave detector (the Einstein Telescope, ET), which can be considered as standard sirens. Assuming the emission-line luminosity versus ionized gas velocity dispersion relation, $log L ($H$beta) = alpha log sigma($H$beta)+kappa$, we find the full sample provides a tight constraint on the correlation parameters. However, similar analysis done on three different sub-samples seems to support the scheme of treating HII galaxies and giant extragalactic HII regions with distinct strategies. Using the corrected $L$--$sigma$ relation for the HII observational sample beyond the current reach of Type Ia supernovae, we obtain a value of the matter density parameter, $Omega_{m}=0.314pm0.054$ (calibrated with standard clocks) and $Omega_{m}=0.311pm0.049$ (calibrated with standard sirens), in the spatially flat $Lambda$CDM cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا