ﻻ يوجد ملخص باللغة العربية
Only a small fraction of observed Active Galactic Nuclei display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of LOFAR and the VLA, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices ($-1.5leqslant alpha^{1400}_{150}leqslant -0.5$), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.
We explore the connection between the black hole mass and its relativistic jet for a sample of radio-loud AGN (z < 1), in which the relativistic jet parameters are well estimated by means of long term monitoring with the 14m Metsahovi millimeter wave
We examine the relationship between star formation and AGN activity by constructing matched samples of local ($0<z<0.6$) radio-loud and radio-quiet AGN in the $textit{Herschel}$-ATLAS fields. Radio-loud AGN are classified as high-excitation and low-e
We report the discovery of a remnant radio AGN J1615+5452 in the field of ELAIS-N1. GMRT continuum observations at 150, 325 and 610 MHz combined with archival data from the 1.4 GHz NVSS survey were used to derive the radio spectrum of the source. At
Radio-loud AGN (>10^{22} W/Hz at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total
We constructed a sample of 23,344 radio-loud active galactic nuclei (RLAGN) from the catalogue derived from the LOFAR Two-Metre Sky Survey (LoTSS) survey of the HETDEX Spring field. Although separating AGN from star-forming galaxies remains challengi