ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the nature of excitons in liquid exfoliated monolayer WS2

295   0   0.0 ( 0 )
 نشر من قبل {\\L}ukasz K{\\l}opotowski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal dichalcogenides hold promise for applications in novel optoelectronic devices. There is therefore a need for materials that can be obtained in large quantities and with well understood optical properties. In this report, we present a thorough photoluminescence (PL) investigations of monolayer tungsten disulphide obtained via liquid phase exfoliation. As shown by microscopy studies, the exfoliated nanosheets have dimensions of tens of nanometers and thickness of 2.5 monolayers on average. The monolayer content is about 20%. Our studies show that at low temperature the photoluminescence is dominated by excitons localized on nanosheet edges. As a consequence, the PL is strongly sensitive to environment and exhibits an enhanced splitting in magnetic field. As the temperature is increased, the excitons are thermally excited out of the defect states and the dominant transition is that of the negatively charged exciton. Furthermore, upon excitation with a circularly polarized light, the PL retains a degree of polarization reaching 50% and inherited from the valley polarized photoexcited excitons. The studies of PL dynamics reveal that the PL lifetime is on the order of 10 ps, probably limited by non-radiative processes. Our results underline the potential of liquid exfoliated TMD monolayers in large scale optoelectronic devices.

قيم البحث

اقرأ أيضاً

Single layers of WS2 are direct gap semiconductors with high photoluminescence (PL) yield holding great promise for emerging applications in optoelectronics. The spatial confinement in a 2D monolayer together with the weak dielectric screening lead t o huge binding energies for the neutral excitons as well as other excitonic complexes, such as trions and biexcitons whose binding energies scale accordingly. Here, we report on the existence of biexcitons in mechanically exfoliated WS2 flakes from 78 K up to room temperature. Performing temperature and power dependent PL measurements, we identify the biexciton emission channel through the superlinear behavior of the integrated PL intensity as a function of the excitation power density. On the contrary, neutral and charged excitons show a linear to sublinear dependence in the whole temperature range. From the energy difference between the emission channels of the biexciton and neutral exciton, a biexciton binding energy of 65-70 meV is determined.
Ideal monolayers of common semiconducting transition metal dichalcogenides (TMDCs) such as MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$ possess many similar electronic properties. As it is the case for all semiconductors, however, the physical response of these systems is strongly determined by defects in a way specific to each individual compound. Here we investigate the ability of exfoliated monolayers of these TMDCs to support high-quality, well-balanced ambipolar conduction, which has been demonstrated for WS$_2$, MoSe$_2$, and WSe$_2$, but not for MoS$_2$. Using ionic-liquid gated transistors we show that, contrary to WS$_2$, MoSe$_2$, and WSe$_2$, hole transport in exfoliated MoS$_2$ monolayers is systematically anomalous, exhibiting a maximum in conductivity at negative gate voltage (V$_G$) followed by a suppression of up to 100 times upon further increasing V$_G$. To understand the origin of this difference we have performed a series of experiments including the comparison of hole transport in MoS$_2$ monolayers and thicker multilayers, in exfoliated and CVD-grown monolayers, as well as gate-dependent optical measurements (Raman and photoluminescence) and scanning tunneling imaging and spectroscopy. In agreement with existing {it ab-initio} calculations, the results of all these experiments are consistently explained in terms of defects associated to chalcogen vacancies that only in MoS$_2$ monolayers -- but not in thicker MoS$_2$ multilayers nor in monolayers of the other common semiconducting TMDCs -- create in-gap states near the top of the valence band that act as strong hole traps. Our results demonstrate the importance of studying systematically how defects determine the properties of 2D semiconducting materials and of developing methods to control them.
Ensembles of indirect or interlayer excitons (IXs) are intriguing systems to explore classical and quantum phases of interacting bosonic ensembles. IXs are composite bosons that feature enlarged lifetimes due to the reduced overlap of the electron-ho le wave functions. We demonstrate electric Field control of indirect excitons in MoS2/WS2 hetero-bilayers embedded in a field effect structure with few-layer hexagonal boron nitrite as insulator and few-layer graphene as gate-electrodes. The different strength of the excitonic dipoles and a distinct temperature dependence identify the indirect excitons to stem from optical interband transitions with electrons and holes located in different valleys of the hetero-bilayer featuring highly hybridized electronic states. For the energetically lowest emission lines, we observe a field-dependent level anticrossing at low temperatures. We discuss this behavior in terms of coupling of electronic states from the two semiconducting monolayers resulting in spatially delocalized excitons of the hetero-bilayer behaving like an artificial van der Waals solid. Our results demonstrate the design of novel nano-quantum materials prepared from artificial van der Waals solids with the possibility to in-situ control their physical properties via external stimuli such as electric fields.
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmissio n spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71eV around K valley in the Brillouin zone. The trion binding energy of 34meV, two-photon absorption cross section 4X10^{4}cm^{2}W^{-2}S^{-1} at 780nm and exciton-exciton annihilation rate around 0.5cm^{2}/s are experimentally obtained.
Two-dimensional excitons formed in quantum materials such as monolayer transition-metal dichalcogenides and their strong light-matter interaction have attracted unrivalled attention by the research community due to their extraordinarily large oscilla tor strength as well as binding energy, and the inherent spin-valley locking. Semiconducting few-layer and monolayer materials with their sharp optical resonances such as WSe2 have been extensively studied and envisioned for applications in the weak as well as strong light-matter coupling regimes, for effective nano-laser operation with various different structures, and particularly for valleytronic nanophotonics motivated by the circular dichroism. Many of these applications, which may benefit heavily from the two-dimensional electronic quasiparticles properties in such films, require controlling, manipulating and first of all understanding the nature of the optical resonances that are attributed to exciton modes. While theory and previous experiments have provided unique methods to the characterization and classification efforts regarding the band structure and optical modes in 2D materials, here, we directly measure the quasiparticle energy-momentum dispersion for the first time. Our results for single-layer WSe2 clearly indicate an emission regime predominantly governed by free excitons, i.e. Coulomb-bound electron-hole pairs with centre-of-mass momentum and corresponding effective mass. Besides uniquely evidencing the existence of free excitons at cryogenic temperatures optically, the fading of the dispersive character for increased temperatures or excitation densities reveals a transition to a regime with profound role of charge-carrier plasma or localized excitons regarding its emission, debunking the myth of free-exciton emission at elevated temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا