ﻻ يوجد ملخص باللغة العربية
A new Cr-based quasi-one-dimensional superconductor Na2Cr3As3 was synthesized by an ion-exchange method in sodium naphthalenide solution. The crystals are thread-like and the structure was analyzed by X-ray diffraction with a noncentrosymmetric hexagonal space group P-6m2 (No. 187), in which the (Cr3As3)2- linear chains are separated by Na+ ions, and the refined lattice parameters are a = 9.239(2) {AA} and c = 4.209(6) {AA}. The measurements for electrical resistivity, magnetic susceptibility, and heat capacity reveal a superconducting transition with unconventional characteristic at the Tc of 8.6 K, which exceeds that of all previously reported Cr-based superconductors.
Recently a new family of Cr-based A2Cr3As3 (A = K, Rb, Cs) superconductors were reported, which own a rare quasi-one-dimensional (Q1D) crystal structure with infinite (Cr3As3)2- chains and exhibit intriguing superconducting characteristics possibly d
Here we report the discovery of the first ternary molybdenum pnictide based superconductor K2Mo3As3. Polycrystalline samples were synthesized by the conventional solid state reaction method. X-ray diffraction analysis reveals a quasi-one-dimensional
We report the discovery of bulk superconductivity (SC) at 6.1 K in a quasi-one-dimensional (Q1D) chromium pnictide K$_2$Cr$_3$As$_3$ which contains [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ double-walled subnano-tubes with face-sharing Cr$_{6/2}$ (As$_{6/2}$
By replacing the alkali element in the newly discovered K2Mo3As3 superconductor, we successfully synthesized ternary molybdenum pnictides Rb2Mo3As3 and Cs2Mo3As3 through solid state reaction method. Powder X-ray diffraction analysis reveals the same
Following the discovery of superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_3$ containing [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ chains [J. K. Bao et al., arXiv: 1412.0067 (2014)], we succeeded in synthesizing an analogous compound, Rb$_2$Cr$_3$A