ترغب بنشر مسار تعليمي؟ اضغط هنا

A direct calibration of the IRX-{beta} relation in Lyman-break Galaxies at z=3-5

62   0   0.0 ( 0 )
 نشر من قبل Maciej Koprowski Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a sample of 4178 Lyman break galaxies (LBGs) at z = 3, 4 and 5 in the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) field to investigate the relationship between the observed slope of the stellar continuum emission in the ultraviolet, {beta}, and the thermal dust emission, as quantified via the so-called infrared excess (IRX = LIR/LUV). Through a stacking analysis we directly measure the 850-{mu}m flux density of LBGs in our deep (0.9mJy) James Clerk Maxwell Telescope (JCMT) SCUBA-2 850-{mu}m map, as well as deep public Herschel/SPIRE 250-, 350- and 500-{mu}m imaging. We establish functional forms for the IRX-{beta} relation to z ~ 5, confirming that there is no significant redshift evolution of the relation and that the resulting average IRX-{beta} curve is consistent with a Calzetti-like attenuation law. We compare our results with recent work in the literature, finding that discrepancies in the slope of the IRX-{beta} relation are driven by biases in the methodology used to determine the ultraviolet slopes. Consistent results are found when IRX-{beta} is evaluated by stacking in bins of stellar mass, M, and we argue that the near-linear IRX-M relationship is a better proxy for correcting observed UV luminosities to total star formation rates, provided an accurate handle on M can be had, and also gives clues as to the physical driver of the role of dust-obscured star formation in high-redshift galaxies.

قيم البحث

اقرأ أيضاً

The relation between infrared excess (IRX) and UV spectral slope ($beta_{rm UV}$) is an empirical probe of dust properties of galaxies. The shape, scatter, and redshift evolution of this relation are not well understood, however, leading to uncertain ties in estimating the dust content and star formation rates (SFRs) of galaxies at high redshift. In this study, we explore the nature and properties of the IRX-$beta_{rm UV}$ relation with a sample of $z=2-6$ galaxies ($M_*approx 10^9-10^{12},M_odot$) extracted from high-resolution cosmological simulations (MassiveFIRE) of the Feedback in Realistic Environments (FIRE) project. The galaxies in our sample show an IRX-$beta_{rm UV}$ relation that is in good agreement with the observed relation in nearby galaxies. IRX is tightly coupled to the UV optical depth, and is mainly determined by the dust-to-star geometry instead of total dust mass, while $beta_{rm UV}$ is set both by stellar properties, UV optical depth, and the dust extinction law. Overall, much of the scatter in the IRX-$beta_{rm UV}$ relation of our sample is found to be driven by variations of the intrinsic UV spectral slope. We further assess how the IRX-$beta_{rm UV}$ relation depends on viewing direction, dust-to-metal ratio, birth-cloud structures, and the dust extinction law and we present a simple model that encapsulates most of the found dependencies. Consequently, we argue that the reported `deficit of the infrared/sub-millimetre bright objects at $z>5$ does not necessarily imply a non-standard dust extinction law at those epochs.
73 - K.E.K. Coppin 2014
We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infra red Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0x10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -2<Beta<0 such that SFR(IR)/SFR(UV)~20 for the reddest LBGs. Furthermore, the most massive LBGs also tend to have higher obscured-to-unobscured ratio, hinting at a variation in the obscuration properties across the mass range.
63 - I. Iwata , K. Ohta 2003
(abridged) We present results of a search for Lyman break galaxies (LBGs) at z ~ 5 in a 618 square-arcmin field including the HDF-N taken by Subaru Prime Focus Camera. Utilizing the published redshift data of the HDF-N and its flanking fields, the co lor selection criteria are chosen so that LBGs are picked out most efficiently and least contaminated by foreground objects. The numbers of LBG candidates detected are 310 in 23.0 < I_c < 25.5. The rest-frame UV luminosity function(LF) of LBGs at z ~ 5 is derived statistically. The fraction of contamination is estimated to be ~50% in the faintest magnitude range. The completeness of the survey is ~80% at the bright part of the sample, and ~20% in the faintest magnitude range (25.0 < I_c <= 25.5). The LF of LBG candidates at z ~ 5 does not show a significant difference from those at z ~ 3 and 4, though there might be a slight decrease in the fainter part. The UV luminosity density within the observational limit is 0.56 - 0.69 times smaller than that obtained for LBGs at z ~ 3, depending on the adopted cosmology and the integration range of the LF. The similarity of the LFs at redshifts 5 to 3 implies that most of LBGs at z ~ 5 should have faded out at z ~ 3 and LBGs at z ~ 5 are different galaxies from those seen at z ~ 3, if we take face values for ages of the LBGs at z ~ 3 obtained by the SED fitting in which a continuous star formation in an individual galaxy is assumed. However, if the star formation in LBGs is sporadic, the similarity of the LF at z ~ 3 and 5 would be explained. Such sporadic star formation has been suggested by hydrodynamical simulations and semi-analytic models with collisional starbursts, and the trend of the cosmic star formation history predicted by these studies resembles to that estimated from the UV luminosity density within the observational limit.
We present the results of Spectral Energy Distribution(SED) fitting analysis for Lyman Break Galaxies(LBGs) at z~5 in the GOODS-N and its flanking fields (the GOODS-FF). With the publicly available IRAC images in the GOODS-N and IRAC data in the GOOD S-FF, we constructed the rest-frame UV to optical SEDs for a large sample (~100) of UV-selected galaxies at z~5. Comparing the observed SEDs with model SEDs generated with a population synthesis code, we derived a best-fit set of parameters (stellar mass, age, color excess, and star formation rate) for each of sample LBGs. The derived stellar masses range from 10^8 to 10^11M_sun with a median value of 4.1x10^9M_sun. The comparison with z=2-3 LBGs shows that the stellar masses of z~5 LBGs are systematically smaller by a factor of 3-4 than those of z=2-3 LBGs in a similar rest-frame UV luminosity range. The star formation ages are relatively younger than those of the z=2-3 LBGs. We also compared the results for our sample with other studies for the z=5-6 galaxies. Although there seem to be similarities and differences in the properties, we could not conclude its significance. We also derived a stellar mass function of our sample by correcting for incompletenesses. Although the number densities in the massive end are comparable to the theoretical predictions from semi-analytic models, the number densities in the low-mass part are smaller than the model predictions. By integrating the stellar mass function down to 10^8 M_sun, the stellar mass density at z~5 is calculated to be (0.7-2.4)x10^7M_sun Mpc^-3. The stellar mass density at z~5 is dominated by massive part of the stellar mass function. Compared with other observational studies and the model predictions, the mass density of our sample is consistent with general trend of the increase of the stellar mass density with time.
We briefly summarize our findings from the unbiased surveys for $z$$sim$5 LBGs based on Subaru/Suprime-Cam and follow-up optical spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا