ﻻ يوجد ملخص باللغة العربية
Device-to-Device (D2D) communication can support the operation of cellular systems by reducing the traffic in the network infrastructure. In this paper, the benefits of D2D communication are investigated in the context of a Fog-Radio Access Network (F-RAN) that leverages edge caching and fronthaul connectivity for the purpose of content delivery. Assuming offline caching, out-of-band D2D communication, and an F-RAN with two edge nodes and two user equipments, an information-theoretically optimal caching and delivery strategy is presented that minimizes the delivery time in the high signal-to-noise ratio regime. The delivery time accounts for the latency caused by fronthaul, downlink, and D2D transmissions. The proposed optimal strategy is based on a novel scheme for an X-channel with receiver cooperation that leverages tools from real interference alignment. Insights are provided on the regimes in which D2D communication is beneficial.
A Fog-Radio Access Network (F-RAN) is studied in which cache-enabled Edge Nodes (ENs) with dedicated fronthaul connections to the cloud aim at delivering contents to mobile users. Using an information-theoretic approach, this work tackles the problem
Fog Radio Access Network (F-RAN) exploits cached contents at edge nodes (ENs) and fronthaul connection to the cloud for content delivery. Assuming dedicated fronthaul links between cloud and each EN, previous works focused on analyses of F-RANs using
Fog Radio Access Network (F-RAN) architectures can leverage both cloud processing and edge caching for content delivery to the users. To this end, F-RAN utilizes caches at the edge nodes (ENs) and fronthaul links connecting a cloud processor to ENs.
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D li
We study downlink beamforming in a single-cell network with a multi-antenna base station (BS) serving cache-enabled users. For a given common rate of the files in the system, we first formulate the minimum transmit power with beamforming at the BS as