ترغب بنشر مسار تعليمي؟ اضغط هنا

Smooth solutions to the complex Plateau problem

359   0   0.0 ( 0 )
 نشر من قبل Tommaso de Fernex
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Tommaso de Fernex




اسأل ChatGPT حول البحث

Building on work of Du, Gao, and Yau, we give a characterization of smooth solutions, up to normalization, of the complex Plateau problem for strongly pseudoconvex Calabi--Yau CR manifolds of dimension $2n-1 ge 5$ and in the hypersurface case when $n=2$. The latter case was completely solved by Yau for $n ge 3$ but only partially solved by Du and Yau for $n=2$. As an application, we determine the existence of a link-theoretic invariant of normal isolated singularities that distinguishes smooth points from singular ones.



قيم البحث

اقرأ أيضاً

We introduce a class of normal complex spaces having only mild sin-gularities (close to quotient singularities) for which we generalize the notion of a (analytic) fundamental class for an analytic cycle and also the notion of a relative fundamental c lass for an analytic family of cycles. We also generalize to these spaces the geometric intersection theory for analytic cycles with rational positive coefficients and show that it behaves well with respect to analytic families of cycles. We prove that this intersection theory has most of the usual properties of the standard geometric intersection theory on complex manifolds, but with the exception that the intersection cycle of two cycles with positive integral coefficients that intersect properly may have rational coefficients. AMS classification. 32 C 20-32 C 25-32 C 36.
Let $X$ be a compact Kahler manifold of dimension $n$ and $omega$ a Kahler form on $X$. We consider the complex Monge-Amp`ere equation $(dd^c u+omega)^n=mu$, where $mu$ is a given positive measure on $X$ of suitable mass and $u$ is an $omega$-plurisu bharmonic function. We show that the equation admits a Holder continuous solution {it if and only if} the measure $mu$, seen as a functional on a complex Sobolev space $W^*(X)$, is Holder continuous. A similar result is also obtained for the complex Monge-Amp`ere equations on domains of $mathbb{C}^n$.
This note establishes smooth approximation from above for J-plurisubharmonic functions on an almost complex manifold (X,J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion f unction. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence {u_j} of smooth, strictly J-plurisubharmonic functions point-wise decreasing down to u. On any almost complex manifold (X,J) each point has a fundamental neighborhood system of J-pseudoconvex domains, and so the theorem above establishes local smooth approximation on X. This result was proved in complex dimension 2 by the third author, who also showed that the result would hold in general dimensions if a parallel result for continuous approximation were known. This paper establishes the required step by solving the obstacle problem.
Let $Omega Subset mathbb C^n$ be a bounded strongly $m$-pseudoconvex domain ($1leq mleq n$) and $mu$ a positive Borel measure on $Omega$. We study the complex Hessian equation $(dd^c u)^m wedge beta^{n - m} = mu$ on $Omega$. First we give a suffi cient condition on the measure $mu$ in terms of its domination by the $m$-Hessian capacity which guarantees the existence of a continuous solution to the associated Dirichlet problem with a continuous boundary datum. As an application, we prove that if the equation has a continuous $m$-subharmonic subsolution whose modulus of continuity satisfies a Dini type condition, then the equation has a continuous solution with an arbitrary continuous boundary datum. Moreover when the measure has a finite mass, we give a precise quantitative estimate on the modulus of continuity of the solution. One of the main steps in the proofs is to establish a new capacity estimate showing that the $m$-Hessian measure of a continuous $m$-subharmonic function on $Omega$ with zero boundary values is dominated by an explicit function of the $m$-Hessian capacity with respect to $Omega$, involving the modulus of continuity of $varphi$. Another important ingredient is a new weak stability estimate on the Hessian measure of a continuous $m$-subharmonic function.
We prove that two smooth families of 2-connected domains in $cc$ are smoothly equivalent if they are equivalent under a possibly discontinuous family of biholomorphisms. We construct, for $m geq 3$, two smooth families of smoothly bounded $m$-connect ed domains in $cc$, and for $ngeq2$, two families of strictly pseudoconvex domains in $cc^n$, that are equivalent under discontinuous families of biholomorphisms but not under any continuous family of biholomorphisms. Finally, we give sufficient conditions for the smooth equivalence of two smooth families of domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا