ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximating Node-Weighted k-MST on Planar Graphs

64   0   0.0 ( 0 )
 نشر من قبل Mateusz Lewandowski
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of finding a minimum weight connected subgraph spanning at least $k$ vertices on planar, node-weighted graphs. We give a $(4+eps)$-approximation algorithm for this problem. We achieve this by utilizing the recent LMP primal-dual $3$-approximation for the node-weighted prize-collecting Steiner tree problem by Byrka et al (SWAT16) and adopting an approach by Chudak et al. (Math. Prog. 04) regarding Lagrangian relaxation for the edge-weighted variant. In particular, we improve the procedure of picking additional vertices (tree merging procedure) given by Sadeghian (2013) by taking a constant number of recursive steps and utilizing the limited guessing procedure of Arora and Karakostas (Math. Prog. 06). More generally, our approach readily gives a $( icefrac{4}{3}cdot r+eps)$-approximation on any graph class where the algorithm of Byrka et al. for the prize-collecting version gives an $r$-approximation. We argue that this can be interpreted as a generalization of an analogous result by Konemann et al. (Algorithmica~11) for partial cover problems. Together with a lower bound construction by Mestre (STACS08) for partial cover this implies that our bound is essentially best possible among algorithms that utilize an LMP algorithm for the Lagrangian relaxation as a black box. In addition to that, we argue by a more involved lower bound construction that even using the LMP algorithm by Byrka et al. in a emph{non-black-box} fashion could not beat the factor $ icefrac{4}{3}cdot r$ when the tree merging step relies only on the solutions output by the LMP algorithm.



قيم البحث

اقرأ أيضاً

We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88 + epsilon$)-approximation which establishes a new best approximation guarantee for planar NWPCST. This is done by combining our LMP algorithm with a threshold rounding technique and utilizing the 2.4-approximation of Berman and Yaroslavtsev for the version without penalties. We also give a primal-dual 4-approximation algorithm for the more general forest version using techniques introduced by Hajiaghay and Jain.
We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families of graphs. The input consists of a node-weighted undirected graph $G=(V,E)$ and integer connectivity requirements $r(uv)$ for each unordered pair of nodes $uv$. The goal is to find a minimum weighted subgraph $H$ of $G$ such that $H$ contains $r(uv)$ disjoint paths between $u$ and $v$ for each node pair $uv$. Thr
We study the design of schedules for multi-commodity multicast; we are given an undirected graph $G$ and a collection of source destination pairs, and the goal is to schedule a minimum-length sequence of matchings that connects every source with its respective destination. Multi-commodity multicast models a classic information dissemination problem in networks where the primary communication constraint is the number of connections that a node can make, not link bandwidth. Multi-commodity multicast is closely related to the problem of finding a subgraph, $H$, of optimal poise, where the poise is defined as the sum of the maximum degree of $H$ and the maximum distance between any source-destination pair in $H$. We first show that the minimum poise subgraph for single-commodity multicast can be approximated to within a factor of $O(log k)$ with respect to the value of a natural LP relaxation in an instance with $k$ terminals. This is the first upper bound on the integrality gap of the natural LP. Using this poise result and shortest-path separators in planar graphs, we obtain a $O(log^3 klog n/(loglog n))$-approximation for multi-commodity multicast for planar graphs. We also study the minimum-time radio gossip problem in planar graphs where a message from each node must be transmitted to all other nodes under a model where nodes can broadcast to all neighbors in a single step but only nodes with a single broadcasting neighbor get a message. We give an $O(log^2 n)$-approximation for radio gossip in planar graphs breaking previous barriers. This is the first bound for radio gossip that does not rely on the maximum degree of the graph. Finally, we show that our techniques for planar graphs extend to graphs with excluded minors. We establish polylogarithmic-approximation algorithms for both multi-commodity multicast and radio gossip problems in minor-free graphs.
We study the classical Node-Disjoint Paths (NDP) problem: given an $n$-vertex graph $G$ and a collection $M={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of vertices of $G$ called demand pairs, find a maximum-cardinality set of node-disjoint paths connecting the demand pairs. NDP is one of the most basic routing problems, that has been studied extensively. Despite this, there are still wide gaps in our understanding of its approximability: the best currently known upper bound of $O(sqrt n)$ on its approximation ratio is achieved via a simple greedy algorithm, while the best current negative result shows that the problem does not have a better than $Omega(log^{1/2-delta}n)$-approximation for any constant $delta$, under standard complexity assumptions. Even for planar graphs no better approximation algorithms are known, and to the best of our knowledge, the best negative bound is APX-hardness. Perhaps the biggest obstacle to obtaining better approximation algorithms for NDP is that most currently known approximation algorithms for this type of problems rely on the standard multicommodity flow relaxation, whose integrality gap is $Omega(sqrt n)$ for NDP, even in planar graphs. In this paper, we break the barrier of $O(sqrt n)$ on the approximability of the NDP problem in planar graphs and obtain an $tilde O(n^{9/19})$-approximation. We introduce a new linear programming relaxation of the problem, and a number of new techniques, that we hope will be helpful in designing more powerful algorithms for this and related problems.
For any $epsilon>0$, Laue and Matijevi{c} [CCCG07, IPL08] give a PTAS for finding a $(1+epsilon)$-approximate solution to the $k$-hop MST problem in the Euclidean plane that runs in time $(n/epsilon)^{O(k/epsilon)}$. In this paper, we present an algo rithm that runs in time $(n/epsilon)^{O(log k cdot(1/epsilon)^2cdotlog^2(1/epsilon))}$. This gives an improvement on the dependency on $k$ on the exponent, while having a worse dependency on $epsilon$. As in Laue and Matijevi{c}, we follow the framework introduced by Arora for Euclidean TSP. Our key ingredients include exponential distance scaling and compression of dynamic programming state tables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا