ﻻ يوجد ملخص باللغة العربية
It is generally assumed in the thermoelectric community that the lattice thermal conductivity of a given material is independent of the electronic properties. This perspective is however questionable since the electron-phonon coupling could have certain effects on both the carrier and phonon transport, which in turn will affect the thermoelectric properties. Using SiGe compound as a prototypical example, we give an accurate prediction of the carrier relaxation time by considering scattering from all the phonon modes, as opposed to the simple deformation potential theory. It is found that the carrier relaxation time does not change much with the concentration, which is however not the case for the phonon transport where the lattice thermal conductivity can be significantly reduced by electron-phonon coupling at higher carrier concentration. As a consequence, the figure-of-merit of SiGe compound is obviously enhanced at optimized carrier concentration, and becomes more pronounced at elevated temperature.
Using first-principles pseudopotential method and Boltzmann transport theory, we give a comprehensive understanding of the electronic and phonon transport properties of thermoelectric material BiCuSeO. By choosing proper hybrid functional for the exc
The electronic and phonon transport properties of quaternary tetradymite BiSbSeTe2 are investigated using first-principles approach and Boltzmann transport theory. Unlike the binary counterpart Bi2Te3, we obtain a pair of Rashba splitting bands induc
Strain engineering is a very effective method to continuously tune the electronic, topological, optical and thermoelectric properties of materials. In this work, strain-dependent phonon transport of recently-fabricated antimonene (Sb monolayer) under
The extremely large magnetoresistance (XMR) material LaBi was reported to become superconducting under pressure accompanying with suppressed magnetoresistance. However, the underlying mechanism is unclear. By using first-principles electronic structu
Recent experiments reported giant magnetoresistance at room temperature in LaOMnAs. Here a density functional theory calculation is performed to investigate magnetic properties of LaOMnAs. The ground state is found to be the G-type antiferromagnetic