ﻻ يوجد ملخص باللغة العربية
Using first-principles calculations we predict that $mathrm{TiRhAs}$, a previously synthesized compound, is a Dirac nodal line (DNL) semimetal. The DNL in this compound is found to be protected both by the combination of inversion and time-reversal symmetry, and by a reflection symmetry, in the absence of spin-orbit coupling (SOC). Our calculations show that band velocities associated with the nodal line have a high degree of directional anisotropy, with in-plane velocities $v_perp$ perpendicular to the nodal line between $1.2-2.8times10^5$ m/s. The crossings along the DNL are further found to exhibit a prominent and position-dependent tilt along directions perpendicular to the nodal line. We calculate $mathbb{Z}_2$ indices based on parity eigenvalues at time-reversal invariant momenta and show that $mathrm{TiRhAs}$ is topological. A tight-binding model fit from our first-principles calculations demonstrates the existence of two-dimensional drumhead surface states on the surface Brillouin zone. Based on the small gapping of the DNL upon inclusion of SOC and the clean Fermi surface free from trivial bands, $mathrm{TiRhAs}$ is a promising candidate for further studies of the properties of topological semimetals.
Previously known three-dimensional Dirac semimetals (DSs) occur in two types -- topological DSs and nonsymmorphic DSs. Here we present a novel three-dimensional DS that exhibits both features of the topological and nonsymmorphic DSs. We introduce a m
We employ angle resolved photoemission spectroscopy (ARPES) to investigate the Fermi surface of RuO$_2$. We find a network of two Dirac nodal lines (DNL) as previously predicted in theory, where the valence- and conduction bands touch along continuou
We report a study of quantum oscillations (QO) in the magnetic torque of the nodal-line Dirac semimetal ZrSiS in the magnetic fields up to 35 T and the temperature range from 40 K down to 2 K, enabling high resolution mapping of the Fermi surface (FS
Topological nodal-line semimetals with exotic quantum properties are characterized by symmetry-protected line-contact bulk band crossings in the momentum space. However, in most of identified topological nodal-line compounds, these topological non-tr
Dirac nodal-line semimetals with the linear bands crossing along a line or loop, represent a new topological state of matter. Here, by carrying out magnetotransport measurements and performing first-principle calculations, we demonstrate that such a