ﻻ يوجد ملخص باللغة العربية
Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. As a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one-loop using dimensional regularization using the BTGT formalism.
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual re
Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor
Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated
We verify Standard Model Effective Field Theory Ward identities to one loop order when background field gauge is used to quantize the theory. The results we present lay the foundation of next to leading order automatic generation of results in the SM
Basic properties of gauge theories in the framework of Faddeev-Popov (FP) method, Batalin-Vilkovisky (BV) formalism, functional renormalization group approach are considered. The FP- and BV- quantizations are characterized by the BRST symmetry while