ترغب بنشر مسار تعليمي؟ اضغط هنا

Mode cooperation in two-dimensional plasmonic distributed-feedback laser

77   0   0.0 ( 0 )
 نشر من قبل Evgeny Andrianov Dr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmonic distributed-feedback lasers based on a two-dimensional periodic array of metallic nanostructures are the main candidate for nanoscale sources of coherent electromagnetic field. Strong localization of the electromagnetic field and the large radiation surface are good opportunities for achieving an ultrashort response time to the external actions and creating beam directionality. At the same time, the investigation of such a system is a challenging problem. In this paper, we present an exhaustive study of the operation of a two-dimensional plasmonic distributed-feedback laser. We show that the complex structure of the modes of a periodic plasmonic array and the nonlinear interaction between the modes through the active medium lead to a new effect, namely, mode cooperation. Mode cooperation is manifested as the generation of the modes in an allowed band with a high threshold instead of modes localized near the band gap with a low threshold. Suppression of lasing of the modes at the edge of the band gap results in widening of the radiation pattern above the generation threshold. This paves the way for effective control and manipulation of the radiation pattern of nanoscale systems, which is of great importance for applications in spectroscopy and optoelectronics.

قيم البحث

اقرأ أيضاً

100 - Yi Wang , Siming Chen , Ying Yu 2018
Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed fe edback (DFB) laser array fabricated in InAs/GaAs quantum-dot (QD) gain material epitaxially grown on silicon. CW threshold currents as low as 12 mA and single-mode side mode suppression ratios (SMSRs) as high as 50 dB have been achieved from individual devices in the array. The laser array, compatible with state-of-the-art coarse wavelength division multiplexing (CWDM) systems, has a well-aligned channel spacing of 20 0.2 nm and exhibits a record wavelength coverage range of 100 nm, the full span of the O-band. These results indicate that, for the first time, the performance of lasers epitaxially grown on silicon is elevated to a point approaching real-world CWDM applications, demonstrating the great potential of this technology.
We demonstrate a combination of optical and electronic feedback that significantly narrows the linewidth of distributed Bragg reflector lasers (DBRs). We use optical feedback from a long external fiber path to reduce the high-frequency noise of the l aser. An electro-optic modulator placed inside the optical feedback path allows us to apply electronic feedback to the laser frequency with very large bandwidth, enabling robust and stable locking to a reference cavity that suppresses low-frequency components of laser noise. The combination of optical and electronic feedback allows us to significantly lower the frequency noise power spectral density of the laser across all frequencies and narrow its linewidth from a free-running value of 1.1 MHz to a stabilized value of 1.9 kHz, limited by the detection system resolution. This approach enables the construction of robust lasers with sub-kHz linewidth based on DBRs across a broad range of wavelengths.
By analogy to the three dimensional optical bottle beam, we introduce the plasmonic bottle beam: a two dimensional surface wave which features a lattice of plasmonic bottles, i.e. alternating regions of bright focii surrounded by low intensities. The two-dimensional bottle beam is created by the interference of a non-diffracting beam, a cosine-Gaussian beam, and a plane wave, thus giving rise to a non-diffracting complex intensity distribution. By controlling the propagation constant of the cosine-Gauss beam, the size and number of plasmonic bottles can be engineered. The two dimensional lattice of hot spots formed by this new plasmonic wave could have applications in plasmonic trapping.
Although nanolasers typically have low Q-factors and high lasing thresholds, they have been successfully implemented with various gain media. Intuitively, it seems that an increase in the gain coefficient would improve the characteristics of nanolase rs. For a plasmonic nanolaser, in particular, a distributed-feed-back (DFB) laser, we propose a self-consistent model that takes into account both spontaneous emission and the multimode character of laser generation to show that for a given pumping strength, the gain coefficient has an optimal value at which the radiation intensity is at a maximum and the radiation linewidth is at a minimum.
71 - Jing Pan 2020
We present a novel scheme of structured light laser with an astigmatic mode converter (AMC) as intracavity element, first enabling the generation of Hermite-Gaussian (HG) modes with fully controlled two-dimensional (2D) indices (m,n) and vortex beams carrying orbital angular momentum (OAM) directly from cavity. The 2D tunability was realized by controlling the off-axis displacements of both pump and intracavity AMC. The output HGm,n beam could be externally converted into OAM beam with 2D tunable radial and azimuthal indices (p,l). With the certain parameter control, vortex beam carrying OAM also could be directly generated from the cavity. Our setup provides a compact and concise structured light source. It has great potential in extending various applications of optical tweezers, communications, and nonlinearity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا