ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength Signatures of Cosmic Rays in the Milky Way

286   0   0.0 ( 0 )
 نشر من قبل Elena Orlando Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic rays (CRs) propagate in the Milky Way and interact with the interstellar medium and magnetic fields. These interactions produce emissions that span the electromagnetic spectrum, and are an invaluable tool for understanding the intensities and spectra of CRs in distant regions, far beyond those probed by direct CR measurements. We present updates on the study of CR properties by combining multi-frequency observations of the interstellar emission and latest CR direct measurements with propagation models.

قيم البحث

اقرأ أيضاً

Isolated black holes in our Galaxy have eluded detection so far. We present here a comprehensive study on the detectability of isolated stellar-mass astrophysical black holes that accrete interstellar gas from molecular clouds in both the local regio n and the Central Molecular Zone. We adopt a state-of-the-art model for the accretion physics backed up by numerical simulations, and study the number of observable sources in both the radio and X-ray band, as a function of a variety of parameters. We discuss in particular the impact of the astrophysical uncertainties on our prediction for the number of bright X-ray sources in the central region of the Galaxy. We finally consider future developments in the radio domain, and assess the potential of SKA to detect a population of astrophysical black holes accreting gas in our Galaxy.
186 - V. Berezinsky 2013
The signatures of UHE proton propagation through CMB are pair-production dip and GZK cutoff. The visible manifestations of these spectral features are ankle, beginning of GZK cutoff in the differential spectrum and E_{1/2} in integral spectrum. Obser ved in all experiments, the ankle is usually interpreted as transition from galactic to extragalactic cosmic rays. Using the mass composition measured by HiRes, Telescope Array (TA) and Auger detectors at energy (1-3) EeV, calculated anisotropy of galactic cosmic rays at these energies, and the elongation curves we strongly argue against the interpretation of the ankle given above. The transition must occur at lower energy, most probably at the second knee as the dip model predicts. The other prediction of this model, the shape of the dip, is well confirmed by HiRes, TA, AGASA and Yakutsk detectors, and, after recalibration of energies, by Auger detector. Predicted beginning of GZK cutoff and E_{1/2} agree well with HiRes and TA data. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, as required by the dip model, the data of Auger detector strongly evidence for nuclei mass composition becoming steadily heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The Auger-based scenario is consistent with another interpretation of the ankle at energy E_a=4 EeV as transition from extragalactic protons to extragalactic nuclei. The heavy- nuclei dominance at higher energies may be provided by low-energy of acceleration for protons E_{max} sim 4 EeV and rigidity-dependent E_{max}^A =Z E_{max}$ for nuclei. The highest energy suppression may be explained as nuclei-destroying cutoff.
It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding ha lo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of gamma-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for gamma-ray emission produced by CR interactions in several high- and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic plane. We achieve the first detection of intermediate-velocity clouds in gamma rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the gamma-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.
The complex interplay of processes at the Galactic Center is at the heart of numerous past, present, and (likely) future mysteries. We aim at a more complete understanding of how spectra extending to >10 TeV result. We first construct a simplified mo del to account for the peculiar energy and angular dependence of the intense central parsec photon field. This allows for calculating anisotropic inverse Compton scattering and mapping gamma-ray extinction due to gamma gamma -> e^+ e^- attenuation. Coupling these with a method for evolving electron spectra, we examine several clear and present excesses, including the diffuse hard X-rays seen by NuSTAR and GeV gamma rays by Fermi. We address further applications to cosmic rays, dark matter, neutrinos, and gamma rays from the Center and beyond.
Cosmic rays up to at least PeV energies are usually described in the framework of an elementary scenario that involves acceleration by objects that are located in the disk of the Milky Way, such as supernova remnants or massive star-forming regions, and then diffusive propagation throughout the Galaxy. Details of the propagation process are so far inferred mainly from the composition of cosmic rays measured near the Earth and then extrapolated to the whole Galaxy. The details of the propagation in the Galactic halo and the escape into the intergalactic medium remain uncertain. The densities of cosmic rays in specific locations can be traced via the gamma rays they produce in inelastic collisions with clouds of interstellar gas. Therefore, we analyze 73 months of Fermi-LAT data from 300 MeV to 10 GeV in the direction of several high- and intermediate-velocity clouds that are located in the halo of the Milky Way. These clouds are supposed to be free of internal sources of cosmic rays and hence any gamma-ray emission from them samples the large-scale distribution of Galactic cosmic rays. We evaluate for the first time the gamma-ray emissivity per hydrogen atom up to ~7 kpc above the Galactic disk. The emissivity is found to decrease with distance from the disk, which provides direct evidence that cosmic rays at the relevant energies originate therein. Furthermore, the emissivity of one of the targets, the upper intermediate-velocity Arch, hints at a 50% decline of the cosmic-ray intensity within 2 kpc from the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا