ترغب بنشر مسار تعليمي؟ اضغط هنا

Deviator Detection under Imperfect Monitoring

353   0   0.0 ( 0 )
 نشر من قبل Dietmar Berwanger
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Grim-trigger strategies are a fundamental mechanism for sustaining equilibria in iterated games: the players cooperate along an agreed path, and as soon as one player deviates, the others form a coalition to play him down to his minmax level. A precondition to triggering such a strategy is that the identity of the deviating player becomes common knowledge among the other players. This can be difficult or impossible to attain in games where the information structure allows only imperfect monitoring of the played actions or of the global state. We study the problem of synthesising finite-state strategies for detecting the deviator from an agreed strategy profile in games played on finite graphs with different information structures. We show that the problem is undecidable in the general case where the global state cannot be monitored. On the other hand, we prove that under perfect monitoring of the global state and imperfect monitoring of actions, the problem becomes decidable, and we present an effective synthesis procedure that covers infinitely repeated games with private monitoring.

قيم البحث

اقرأ أيضاً

We study a stochastic game framework with dynamic set of players, for modeling and analyzing their computational investment strategies in distributed computing. Players obtain a certain reward for solving the problem or for providing their computatio nal resources, while incur a certain cost based on the invested time and computational power. We first study a scenario where the reward is offered for solving the problem, such as in blockchain mining. We show that, in Markov perfect equilibrium, players with cost parameters exceeding a certain threshold, do not invest; while those with cost parameters less than this threshold, invest maximal power. Here, players need not know the system state. We then consider a scenario where the reward is offered for contributing to the computational power of a common central entity, such as in volunteer computing. Here, in Markov perfect equilibrium, only players with cost parameters in a relatively low range in a given state, invest. For the case where players are homogeneous, they invest proportionally to the reward to cost ratio. For both the scenarios, we study the effects of players arrival and departure rates on their utilities using simulations and provide additional insights.
In this paper, we examine the Nash equilibrium convergence properties of no-regret learning in general N-player games. For concreteness, we focus on the archetypal follow the regularized leader (FTRL) family of algorithms, and we consider the full sp ectrum of uncertainty that the players may encounter - from noisy, oracle-based feedback, to bandit, payoff-based information. In this general context, we establish a comprehensive equivalence between the stability of a Nash equilibrium and its support: a Nash equilibrium is stable and attracting with arbitrarily high probability if and only if it is strict (i.e., each equilibrium strategy has a unique best response). This equivalence extends existing continuous-ti
Search has played a fundamental role in computer game research since the very beginning. And while online search has been commonly used in perfect information games such as Chess and Go, online search methods for imperfect information games have only been introduced relatively recently. This paper addresses the question of what is a sound online algorithm in an imperfect information setting of two-player zero-sum games. We argue that the~fixed-strategy~definitions of exploitability and $epsilon$-Nash equilibria are ill-suited to measure an online algorithms worst-case performance. We thus formalize $epsilon$-soundness, a concept that connects the worst-case performance of an online algorithm to the performance of an $epsilon$-Nash equilibrium. As $epsilon$-soundness can be difficult to compute in general, we introduce a consistency framework -- a hierarchy that connects an online algorithms behavior to a Nash equilibrium. These multiple levels of consistency describe in what sense an online algorithm plays just like a fixed Nash equilibrium. These notions further illustrate the difference between perfect and imperfect information settings, as the same consistency guarantees have different worst-case online performance in perfect and imperfect information games. The definitions of soundness and the consistency hierarchy finally provide appropriate tools to analyze online algorithms in repeated imperfect information games. We thus inspect some of the previous online algorithms in a new light, bringing new insights into their worst-case performance guarantees.
We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a number of licenses to put up for auction, and wishes to maximize the societal welfare: the total economic value of the buyers minus the social cost. Motivated by emission license markets deployed in practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has distributional information about the market, and their goal is to tune the auction parameters to maximize expected welfare. The target benchmark is the maximum expected welfare achievable by any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given auction configuration. We describe a subclass of safe-price auctions for which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-telling behavior. We then show that the better of a safe-price auction, or a truthful auction that allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we show how to choose a number of licenses and a price floor so that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable welfare under truth-telling after excluding the welfare contribution of a single buyer.
Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFRs regret bounds depend on the requirement of perfect recall: players always remember information that was revea led to them and the order in which it was revealed. In games without perfect recall, however, CFRs guarantees do not apply. In this paper, we present the first regret bound for CFR when applied to a general class of games with imperfect recall. In addition, we show that CFR applied to any abstraction belonging to our general class results in a regret bound not just for the abstract game, but for the full game as well. We verify our theory and show how imperfect recall can be used to trade a small increase in regret for a significant reduction in memory in three domains: die-roll poker, phantom tic-tac-toe, and Bluff.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا