ﻻ يوجد ملخص باللغة العربية
The class of simple separable KK-contractible (KK-equivalent to ${0}$) C*-algebras which have finite nuclear dimension is shown to be classified by the Elliott invariant. In particular, the class of C*-algebras $Aotimes mathcal W$ is classifiable, where $A$ is a simple separable C*-algebra with finite nuclear dimension and $mathcal W$ is the simple inductive limit of Razak algebras with unique trace, which is bounded.
We compute the nuclear dimension of separable, simple, unital, nuclear, Z-stable C*-algebras. This makes classification accessible from Z-stability and in particular brings large classes of C*-algebras associated to free and minimal actions of amenab
Let $A$ and $C$ be two unital simple C*-algebas with tracial rank zero. Suppose that $C$ is amenable and satisfies the Universal Coefficient Theorem. Denote by ${{KK}}_e(C,A)^{++}$ the set of those $kappa$ for which $kappa(K_0(C)_+setminus{0})subset
We prove that every unital stably finite simple amenable $C^*$-algebra $A$ with finite nuclear dimension and with UCT such that every trace is quasi-diagonal has the property that $Aotimes Q$ has generalized tracial rank at most one, where $Q$ is the
We present a classification theorem for a class of unital simple separable amenable ${cal Z}$-stable $C^*$-algebras by the Elliott invariant. This class of simple $C^*$-algebras exhausts all possible Elliott invariant for unital stably finite simple
Let $A$ be a simple separable unital locally approximately subhomogeneous C*-algebra (locally ASH algebra). It is shown that $Aotimes Q$ can be tracially approximated by unital Elliott-Thomsen algebras with trivial $textrm{K}_1$-group, where $Q$ is t