ترغب بنشر مسار تعليمي؟ اضغط هنا

Half-metallicity in honeycomb-kagome-lattice Mg3C2 monolayer with carrier doping

91   0   0.0 ( 0 )
 نشر من قبل Hongzhe Pan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To obtain high-performance spintronic devices with high integration density, two-dimensional (2D) half-metallic materials are eagerly pursued all along. Here, we propose a stable 2D material with a honeycomb-kagome lattice, i.e., the Mg3C2 monolayer, based on first-principles calculations. This monolayer is an anti-ferromagnetic (AFM) semiconductor at its ground state. We further demonstrate that a transition from AFM semiconductor to ferromagnetic half-metal in this 2D material can be induced by carrier (electron or hole) doping. This magnetic transition can be understood by the Stoner criterion. In addition, the half-metallicity arises from the 2pz orbitals of the carbon (C) atoms for the electron-doped system, but from the C 2px and 2py orbitals for the case of hole doping. Our findings highlight a new promising material with controllable magnetic and electronic properties toward 2D spintronic applications.



قيم البحث

اقرأ أيضاً

157 - J. L. Lu , W. Luo , X. Y. Li 2016
Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetals, and 3D node-line semimetals. In particular, several compounds (e.g., certain three- dimensional graphene networks, Cu3PdN, Ca3P2) were discovered to be 3D node-line semimetals, in which the conduction and the valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., in graphene), 2D topological semimetals are much less investigated. Here, we propose the new concept of a 2D node-line semimetal and suggest that this state could be realized in a new mixed lattice (we name it as HK lattice) composed by kagome and honeycomb lattices. We find that A3B2 (A is a group-IIB cation and B is a group-VA anion) compounds (such as Hg3As2) with the HK lattice are 2D node-line semimetals due to the band inversion between cation s orbital and anion pz orbital. In the presence of buckling or spin-orbit coupling, the 2D node-line semimetal state may turn into 2D Dirac semimetal state or 2D topological crystalline insulating state.
We report first principles theory based electronic structure studies of a semiconducting stoichiometric cage-like Cd9Te9 cluster. Substantial changes are observed in the electronic structure of the cluster on passivation with fictitious hydrogen atom s, in particular, widening of the energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital and enhancement in stability of cluster is seen. The cluster, when substitutionally mono-doped for a Cd by a set of 3d and 4d transition metal atoms (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh and Pd), is found to acquire polarization as seen from spin resolved density of states near Fermi level. Further, such mono-doping in passivated cluster shows half-metallic behavior. Mapping of partial density of states of each system on that of undoped cluster reveals additional levels caused by doping each TM atom separately. In the 3d elemental doping, Ti and Mn doping result into electron type doping whereas all other cases result into hole doped systems. For all the 4d elements studied, it is akin to the doping with holes for Cd substitution in the outer ring, whereas for Ru and Rh, there is electron type doping in case of substitution for Cd in central ring upon passivation. A comparison of partial density of states plots for bare and passivated clusters, on doping with transition metal atoms, suggests suitability of the cage-like cluster for spintronics applications.
Weyl semimetals with time reversal symmetry breaking are expected to show various fascinating physical behaviors, such as intrinsic giant anomalous Hall effect, chiral anomaly effect in the bulks, and Fermi arcs on the surfaces. Here we report a scan ning tunneling microscopy study on the magnetic Weyl semimetal candidate Co$_3$Sn$_2$S$_2$. According to the morphology and local density of states of the surface, we provide assignments to different surface terminations. The measured local density of states reveals a semimetal gap of ~300 mV, which is further verified as the gap in spin-minority bands using spin-resolved tunneling spectra. Additionally, signature for the nontrivial surface states around 50 mV is proposed. This is further confirmed by the observations of standing waves around a step-edge of the sample. Our observations and their comparison with band structure calculations provide direct yet timely evidence for the bulk and surface band structures of the magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$.
Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of carbon phosphide (CP) monolayer consisted of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as {alpha}-CP and b{eta}-CP with puckered and buckled surfaces, respectively are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The {gamma}-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest the binary CP monolayer to be yet unexplored 2D materials holding great promises for applications in high-performance electronics and optoelectronics.
The intriguing properties, especially Dirac physics in graphene, have inspired the pursuit of two-dimensional materials in honeycomb structure. Here we achieved a monolayer transition metal monochalcogenide AgTe on Ag(111) by tellurization of the sub strate. High-resolution scanning tunneling microscopy, combined with low-energy electron diffraction, angle-resolved photoemission spectroscopy, and density functional theory calculations, demonstrates the planar honeycomb structure of AgTe. The first principle calculations further reveal that, protected by the in-plane mirror reflection symmetry, two Dirac node-line Fermions exist in the electronic structures of free-standing AgTe when spin-orbit coupling (SOC) is ignored. While in fact the SOC leads to the gap opening, and resulting in the emergence of the topologically nontrivial quantum spin Hall edge state. Importantly, our experiments evidence the chemical stability of the monolayer AgTe in ambient conditions. It is possible to study AgTe by more ex-situ measurements and even to apply it in novel electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا