ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-level masers as heat-to-work converters

70   0   0.0 ( 0 )
 نشر من قبل Arnab Ghosh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heat engines, which cyclically transform heat into work, are ubiquitous in technology. Lasers and masers, which generate a coherent electromagnetic field, may be viewed as heat engines that rely on population inversion or coherence in the active medium. Here we put forward an unconventional paradigm of a remarkably simple electromagnetic heat-powered engine that bears basic differences to any known maser or laser: it does not rely on population inversion or coherence in its two-level working medium. Nor does it require any coherent driving or pump aside from two (hot and cold) baths. Strikingly, the proposed maser, in which the heat exchange between these baths mediated by the working medium amplifies the signal field, can attain the highest possible efficiency even if the signal is incoherent.



قيم البحث

اقرأ أيضاً

We study work extraction processes mediated by finite-time interactions with an ambient bath -- emph{partial thermalizations} -- as continuous time Markov processes for two-level systems. Such a stochastic process results in fluctuations in the amoun t of work that can be extracted and is characterized by the rate at which the system parameters are driven in addition to the rate of thermalization with the bath. We analyze the distribution of work for the case where the energy gap of a two-level system is driven at a constant rate. We derive analytic expressions for average work and lower bound for the variance of work showing that such processes cannot be fluctuation-free in general. We also observe that an upper bound for the Monte Carlo estimate of the variance of work can be obtained using Jarzynskis fluctuation-dissipation relation for systems initially in equilibrium. Finally, we analyse work extraction cycles by modifying the Carnot cycle, incorporating processes involving partial thermalizations and obtain efficiency at maximum power for such finite-time work extraction cycles under different sets of constraints.
We discuss work performed on a quantum two-level system coupled to multiple thermal baths. To evaluate the work, a measurement of photon exchange between the system and the baths is envisioned. In a realistic scenario, some photons remain unrecorded as they are exchanged with baths that are not accessible to the measurement, and thus only partial information on work and heat is available. The incompleteness of the measurement leads to substantial deviations from standard fluctuation relations. We propose a recovery of these relations, based on including the mutual information given by the counting efficiency of the partial measurement. We further present the experimental status of a possible implementation of the proposed scheme, i.e. a calorimetric measurement of work, currently with nearly single-photon sensitivity.
Superposition states of circular currents of exciton-polaritons mimic the superconducting flux qubits. The phase of a polariton fluid must change by an integer number of $2pi$, when going around the ring. If one introduces a ${pi}$-phase delay line i n the ring, the fluid is obliged to propagate a clockwise or anticlockwise circular current to reduce the total phase gained over one round-trip to zero or to build it up to $2pi$. We show that such a $pi$-delay line can be provided by a dark soliton pinned to a potential well created by a C-shape non-resonant pump-spot. The resulting split-ring polariton condensates exhibit pronounced coherent oscillations passing periodically through clockwise and anticlockwise current states. These oscillations may persist far beyond the coherence time of polariton condensates. The qubits based on split-ring polariton condensates are expected to possess very high figures of merit that makes them a valuable alternative to superconducting qubits. The use of the dipole-polarized polaritons allows to control coherently the state of the qubit with the external electric field. This is shown to be one of the tools for realization of single-qubit logic operations. We propose the design of an $i$SWAP gate based on a pair of coupled polariton qubits. To demonstrate the capacity of the polariton platform for quantum computations, we propose a protocol for the realization of the Deutschs algorithm with polariton qubit networks.
Performances of work-to-work conversion are studied for a dissipative nonlinear quantum system with two isochromatic phase-shifted drives. It is shown that for weak Ohmic damping simultaneous maximization of efficiency with finite power yield and low power fluctuations can be achieved. Optimal performances of these three quantities are accompanied by a shortfall of the trade-off bound recently introduced for classical thermal machines. This bound can be undercut down to zero for sufficiently low temperature and weak dissipation, where the non-Markovian quantum nature dominates. Analytic results are given for linear thermodynamics. These general features can persist in the nonlinear driving regime near to a maximum of the power yield and a minimum of the power fluctuations. This broadens the scope to a new operation field beyond linear response.
The paper discusses the natural emergence of directed motion in a dimer system due to a structural symmetry breaking. A generalised solution is obtained for the transport of such a system which is driven entirely by bath fluctuations. The result show s the existence of possibility of ratcheting driven by bath fluctuations. If this component of energy conversion driven by bath is taken into account the high efficiency of molecular motors as opposed to paradigmatic ratcheting models can probably be explained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا