ﻻ يوجد ملخص باللغة العربية
A suite of science instruments is critical to any high contrast imaging facility, as it defines the science capabilities and observing modes available. SCExAO uses a modular approach which allows for state-of-the-art visitor modules to be tested within an observatory environment on an 8-m class telescope. This allows for rapid prototyping of new and innovative imaging techniques that otherwise take much longer in traditional instrument design. With the aim of maturing science modules for an advanced high contrast imager on an giant segmented mirror telescopes (GSMTs) that will be capable of imaging terrestrial planets, we offer an overview and status update on the various science modules currently under test within the SCExAO instrument.
Modern Giant Segmented Mirror Telescopes (GSMT) like the Extremely Large Telescope (ELT), currently under construction depend heavily on Adaptive Optics (AO) systems to correct for atmospheric turbulence. To be able to correct wider fields of view (F
The High Contrast spectroscopy testbed for Segmented Telescopes (HCST) is being developed at Caltech. It aims at addressing the technology gap for future exoplanet imagers and providing the U.S. community with an academic facility to test components
Segmented telescopes are a possibility to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the complexity of their aperture geometry, due to the central obstruction, support structures and s
This paper introduces an analytical method to calculate segment-level wavefront error tolerances in order to enable the detection of faint extra-solar planets using segmented telescopes in space. This study provides a full treatment of spatially unco
Stellar coronagraphs rely on deformable mirrors (DMs) to correct wavefront errors and create high contrast images. Imperfect control of the DM limits the achievable contrast and, therefore, the DM control electronics must provide fine surface height