ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the Spin Hall Magnetoresistance in Cr$_2$O$_3$/Pt bilayers close to the Neel temperature

204   0   0.0 ( 0 )
 نشر من قبل Richard Schlitz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of magnetoresistance with temperature in thin film bilayers consisting of platinum and the antiferromagnet Cr$_2$O$_3$ with its easy axis out of the plane. We vary the temperature from 20 - 60{deg}C, close to the Neel temperature of Cr$_2$O$_3$ of approximately 37{deg}C. The magnetoresistive response is recorded during rotations of the external magnetic field in three mutually orthogonal planes. A large magnetoresistance having a symmetry consistent with a positive spin Hall magnetoresistance is observed in the paramagnetic phase of the Cr$_2$O$_3$, which however vanishes when cooling to below the Neel temperature. Comparing to analogous experiments in a Gd$_3$Ga$_5$O$_{12}$/Pt heterostructure, we conclude that a paramagnetic field induced magnetization in the insulator is not sufficient to explain the observed magnetoresistance. We speculate that the type of magnetic moments at the interface qualitatively impacts the spin angular momentum transfer, with the $3d$ moments of Cr sinking angular momentum much more efficiently as compared to the more localized $4f$ moments of Gd.

قيم البحث

اقرأ أيضاً

We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers w ith thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
We study the spin Hall magnetoresistance (SMR) in Pt grown $textit{in situ}$ on CoFe$_2$O$_4$ (CFO) ferrimagnetic insulating (FMI) films. A careful analysis of the angle-dependent and field-dependent longitudinal magnetoresistance indicates that the SMR contains a contribution that does not follow the bulk magnetization of CFO but it is a fingerprint of the complex magnetism at the surface of the CFO layer, thus signaling SMR as a tool for mapping surface magnetization. A systematic study of the SMR for different temperatures and CFO thicknesses gives us information impossible to obtain with any standard magnetometry technique. On one hand, surface magnetization behaves independently of the CFO thickness and does not saturate up to high fields, evidencing that the surface has its own anisotropy. On the other hand, characteristic zero-field magnetization steps are not present at the surface while they are relevant in the bulk, strongly suggesting that antiphase boundaries are the responsible of such intriguing features. In addition, a contribution from ordinary magnetoresistance of Pt is identified, which is only distinguishable due to the low resistivity of the $textit{in-situ}$ grown Pt.
100 - Yumeng Yang , Yanjun Xu , Kui Yao 2016
We investigated spin Hall magnetoresistance in FeMn/Pt bilayers, which was found to be one order of magnitude larger than that of heavy metal and insulating ferromagnet or antiferromagnet bilayer systems, and comparable to that of NiFe/Pt bilayers. T he spin Hall magnetoresistance shows a non-monotonic dependence on the thicknesses of both FeMn and Pt. The former can be accounted for by the thickness dependence of net magnetization in FeMn thin films, whereas the latter is mainly due to spin accumulation and diffusion in Pt. Through analysis of the Pt thickness dependence, the spin Hall angle, spin diffusion length of Pt and the real part of spin mixing conductance were determined to be 0.2, 1.1 nm, and $5.5 * 10^{14} {Omega}^{-1} m^{-2}$, respectively. The results corroborate the spin orbit torque effect observed in this system recently.
We conducted a systematic angular dependence study of nonlinear magnetoresistance in NiFe/Pt bilayers at variable temperature and field using the Wheatstone bridge method. We successfully disentangled magnon magnetoresistance from other types of magn etoresistances based on their different temperature and field dependences. Both the spin Hall/anisotropic and magnon magnetoresistances contain sine phi and sine 3 phi components with phi the angle between current and magnetization, but they exhibit different field and temperature dependence. The competition between different types of magnetoresistances leads to a sign reversal of sine 3 phi component at a specific magnetic field, which was not reported previously. The phenomenological model developed is able to account for the experimental results for both NiFe/Pt and NiFe/Ta samples with different layer thicknesses. Our results demonstrate the importance of disentangling different types of magnetoresistances when characterizing the charge-spin interconversion process in magnetic heterostructures.
Oxide interfaces are a source of spin-orbit coupling which can lead to novel spin-to-charge conversion effects. In this work the contribution of the Bi$_2$O$_3$ interface to the anomalous Hall effect of Co is experimentally studied in Co/Bi$_2$O$_3$ bilayers. We evidence a variation of 40% in the AHE of Co when a Bi$_2$O$_3$ capping layer is added to the ferromagnet. This strong variation is attributed to an additional source of asymmetric transport in Co/Bi$_2$O$_3$ bilayers that originates from the Co/Bi$_2$O$_3$ interface and contributes to the skew scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا