ﻻ يوجد ملخص باللغة العربية
We explore the boundaries of sine kernel universality for the eigenvalues of Gaussian perturbations of large deterministic Hermitian matrices. Equivalently, we study for deterministic initial data the time after which Dysons Brownian motion exhibits sine kernel correlations. We explicitly describe this time span in terms of the limiting density and rigidity of the initial points. Our main focus lies on cases where the initial density vanishes at an interior point of the support. We show that the time to reach universality becomes larger if the density vanishes faster or if the initial points show less rigidity.
We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, $Wsim N$. All previous results concerning universality of no
We prove the Wigner-Dyson-Mehta conjecture at fixed energy in the bulk of the spectrum for generalized symmetric and Hermitian Wigner matrices. Previous results concerning the universality of random matrices either require an averaging in the energy
Products of $M$ i.i.d. non-Hermitian random matrices of size $N times N$ relate Gaussian fluctuation of Lyapunov and stability exponents in dynamical systems (finite $N$ and large $M$) to local eigenvalue universality in random matrix theory (finite
We study the distribution of eigenvalues of almost-Hermitian random matrices associated with the classical Gaussian and Laguerre unitary ensembles. In the almost-Hermitian setting, which was pioneered by Fyodorov, Khoruzhenko and Sommers in the case
Consider $Ntimes N$ symmetric one-dimensional random band matrices with general distribution of the entries and band width $W geq N^{3/4+varepsilon}$ for any $varepsilon>0$. In the bulk of the spectrum and in the large $N$ limit, we obtain the foll