ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the phase response of an atom interferometer by means of temporal pulse shaping

94   0   0.0 ( 0 )
 نشر من قبل Remi Geiger
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving the interferometer. The light pulse shape is also shown to modify the scale factor of the interferometer, which has to be taken into account in the evaluation of its accuracy budget. We discuss the trade-offs to operate when choosing a particular pulse shape, by taking into account phase noise rejection, velocity selectivity, and applicability to large momentum transfer atom interferometry.

قيم البحث

اقرأ أيضاً

We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for eme rging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain `{a} Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$times10^{-9}g/sqrt{Hz}$ over a 70 cm baseline or 3.0$times10^{-9}g/sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$times10^{-4}$ that is competitive with the present limit of 1.2$times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.
121 - D. Savoie , M. Altorio , B. Fang 2018
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where 3 atomic clouds are interrogated simultaneously in an atom interferometer featuring a 3.75 Hz sampling rate and an interrogation time of 801 ms. Interleaving improves the inertial sensitivity by efficiently averaging vibration noise, and allows us to perform dynamic rotation measurements in a so-far unexplored range. We demonstrate a stability of $3times 10^{-10}$ rad.s$^{-1}$, which competes with the best stability levels obtained with fiber-optics gyroscopes. Our work validates interleaving as a key concept for future atom-interferometry sensors probing time-varying signals, as in on-board navigation and gravity-gradiometry, searches for dark matter, or gravitational wave detection.
We present a method for determining the phase and contrast of a single shot of an atom interferometer. The application of a phase shear across the atom ensemble yields a spatially varying fringe pattern at each output port, which can be imaged direct ly. This method is broadly relevant to atom interferometric precision measurement, as we demonstrate in a 10 m Rb-87 atomic fountain by implementing an atom interferometric gyrocompass with 10 millidegree precision.
Cold-atom interferometers commonly face systematic effects originating from the coupling between the trajectory of the atomic wave packet and the wave front of the laser beams driving the interferometer. Detrimental for the accuracy and the stability of such inertial sensors, these systematics are particularly enhanced in architectures based on spatially separated laser beams. Here we analyze the effect of a coupling between the relative alignment of two separated laser beams and the trajectory of the atomic wave packet in a four-light-pulse cold-atom gyroscope operated in fountain configuration. We present a method to align the two laser beams at the $0.2 mu$rad level and to determine the optimal mean velocity of the atomic wave packet with an accuracy of $0.2 textrm{mm}cdottextrm{s}^{-1}$. Such fine tuning constrains the associated gyroscope bias to a level of $1times 10^{-10}~textrm{rad}cdottextrm{s}^{-1}$. In addition, we reveal this coupling using the point-source interferometry technique by analyzing single-shot time-of-flight fluorescence traces, which allows us to measure large angular misalignments between the interrogation beams. The alignment method which we present here can be employed in other sensor configurations and is particularly relevant to emerging gravitational wave detector concepts based on cold-atom interferometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا