ﻻ يوجد ملخص باللغة العربية
For a class of $D=5$ holographic models we construct boomerang RG flow solutions that start in the UV at an $AdS_5$ vacuum and end up at the same vacuum in the IR. The RG flows are driven by deformations by relevant operators that explicitly break translation invariance. For specific models, such that they admit another $AdS_5$ solution, $AdS_5^c$, we show that for large enough deformations the RG flows approach an intermediate scaling regime with approximate conformal invariance governed by $AdS^c_5$. For these flows we calculate the holographic entanglement entropy and the entropic $c$-function for the RG flows. The latter is not monotonic, but it does encapsulate the degrees of freedom in each scaling region. For a different set of models, we find boomerang RG flows with intermediate scaling governed by an $AdS_2timesmathbb{R}^3$ solution which breaks translation invariance. Furthermore, for large enough deformations these models have interesting and novel thermal insulating ground states for which the entropy vanishes as the temperature goes to zero, but not as a power-law. Remarkably, the thermal diffusivity and the butterfly velocity for these new insulating ground states are related via $D=Ev^2_B/(2pi T)$, with $E(T)to 0.5$ as $Tto 0$.
We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitat
The most general lagrangian describing spin 2 particles in flat spacetime and containing operators up to (mass) dimension 6 is carefully analyzed, determining the precise conditions for it to be invariant under linearized (transverse) diffeomorphisms
A notable class of superconformal theories (SCFTs) in six dimensions is parameterized by an integer $N$, an ADE group $G$, and two nilpotent elements $mu_mathrm{L,R}$ in $G$. Nilpotent elements have a natural partial ordering, which has been conjectu
Motivated by its potential use in constraining the structure of 6D renormalization group flows, we determine the low energy dilaton-axion effective field theory of conformal and global symmetry breaking in 6D conformal field theories (CFTs). While ou
Sum rules connecting low-energy observables to high-energy physics are an interesting way to probe the mechanism of inflation and its ultraviolet origin. Unfortunately, such sum rules have proven difficult to study in a cosmological setting. Motivate