ترغب بنشر مسار تعليمي؟ اضغط هنا

Microrheology of DNA Hydrogels

196   0   0.0 ( 0 )
 نشر من قبل Zhongyang Xing
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A key objective in DNA-based material science is understanding and precisely controlling the mechanical properties of DNA hydrogels. We perform microrheology measurements using diffusing-wave spectroscopy (DWS) to investigate the viscoelastic behavior of a hydrogel made of Y-shaped DNA nano-stars over a wide range of frequencies and temperatures. Results show a clear liquid-to-equilibrium-gel transition as the temperature cycles up and down across the melting-temperature region for which the Y-DNA bind to each other. These first measurements reveal the crossover of the elastic G({omega}) and loss modulus G({omega}) when the DNA-hydrogel formed at low temperatures is heated to a fluid phase of DNA nano-stars well above the melt temperature Tm. We show that the crossover relates to the life-time of the DNA-bond and also that percolation coincides with the systems Tm. The approach demonstrated here can be easily extended to more complicated DNA hydrogel systems and provides guidance for the future design of such transient, semi-flexible networks that can be adapted to the application of molecular sensing and controlled release.

قيم البحث

اقرأ أيضاً

Sessile drops of soft hydrogels were vibrated vertically by subjecting them to a mechanically induced Gaussian white noise. Power spectra of the surface fluctuation of the gel allowed identification of its resonant frequency that decreases with their mass, but increases with its shear modulus. The principal resonant frequencies of the spheroidal modes of the gel of shear moduli ranging from 55 Pa to 290 Pa were closest to the lowest Rayleigh mode of vibration of a drop of pure water. These observations coupled with the fact that the resonance frequency varies inversely as the square root of the mass in all cases suggest that they primarily correspond to the capillary (or a pseudo-capillary) mode of drop vibration. The contact angles of the gel drops also increase with the modulus of the gel. When the resonance frequencies are corrected for the wetting angles, and plotted against the fundamental frequency scale (gamma/mu)^0.5, all the data collapse nicely on a single plot provided that the latter is shifted by a shear modulus dependent factor (1+mu.L/gamma). A length scale L, independent of both the modulus and the mass of the drop emerges from such a fit.
Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the delocalization of a tracer particle subject to an external force exceeding a threshold value, in a glas sy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model is presented first, that allows analytical progress, and the full physical model is studied numerically next. This analysis yields a continuous type A transition with a critical power law decay of the probe correlation functions with exponent $-1/2$. In order to compare with simulations with a limited duration, a finite time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave vector divergence of the critical amplitude. In addition we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.
We analyze the dynamics of a tracer particle embedded in a bath of hard spheres confined in a channel of varying section. By means of Brownian dynamics simulations we apply a constant force on the tracer particle and discuss the dependence of its mob ility on the relative magnitude of the external force with respect to the entropic force induced by the confinement. A simple theoretical one-dimensional model is also derived, where the contribution from particle-particle and particle-wall interactions is taken from simulations with no external force. Our results show that the mobility of the tracer is strongly affected by the confinement. The tracer velocity in the force direction has a maximum close to the neck of the channel, in agreement with the theory for small forces. Upon increasing the external force, the tracer is effectively confined to the central part of the channel and the velocity modulation decreases, what cannot be reproduced by the theory. This deviation marks the regime of validity of linear response. Surprisingly, when the channel section is not constant the effective friction coefficient is reduced as compared to the case of a plane channel. The transversal velocity, which cannot be studied with our model, follows the qualitatively the derivative of the channel section, in agreement previous theoretical calculations for the tracer diffusivity in equilibrium.
The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that may result in shear rejuvenation requires an astronomical relaxation time. Moreo ver, it is well known that a glass is heterogeneous and a global perturbation cannot explore local mechanical/transport properties. However, an investigation based on a local probe, i.e. microrheology, may overcome these problems. Here, we establish active microrheology of a bulk metallic glass: a probe particle driven into host medium glass. This is a technique amenable for experimental investigations. We show that upon cooling the microscopic friction exhibits a second-order phase transition; this sheds light on the origin of friction in heterogeneous materials. Further, we provide distinct evidence to demonstrate that a strong relationship exists between the microscopic dynamics of the probe particle and the macroscopic properties of the host medium glass. These findings establish active microrheology as a promising technique for investigating the local properties of bulk metallic glass.
We analyze the nonlinear active microrheology of dense colloidal suspensions using a schematic model of mode-coupling theory. The model describes the strongly nonlinear behavior of the microscopic friction coefficient as a function of applied externa l force in terms of a delocalization transition. To probe this regime, we have performed Brownian dynamics simulations of a system of quasi-hard spheres. We also analyze experimental data on hard-sphere-like colloidal suspensions [Habdas et al., Europhys. Lett., 2004, 67, 477]. The behavior at very large forces is addressed specifically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا