ﻻ يوجد ملخص باللغة العربية
Partial compositeness is a key ingredient of models where the electroweak symmetry is broken by a composite Higgs state. Recently, a UV completion of partial compositeness was proposed, featuring a new strongly coupled gauge interaction as well as new fundamental fermions and scalars. We work out the full flavor structure of the minimal realization of this idea and investigate in detail the consequences for flavor physics. While CP violation in kaon mixing represents a significant constraint on the model, we find many viable parameter points passing all precision tests. We also demonstrate that the recently observed hints for a violation of lepton flavor universality in $Bto K^{(*)}ellell$ decays can be accommodated by the model, while the anomalies in $Bto D^{(*)}tau u$ cannot be explained while satisfying LEP constraints on $Z$ couplings.
We study the flavor changing neutral current decays of the MSSM Higgs bosons into strange and bottom quarks. We focus on a scenario of minimum flavor violation here, namely only that induced by the CKM matrix. Taking into account constraint from $bto
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision o
The flavor problem is reviewed starting with the chiral symmetry, and the $A_4$ symmetry derivation and its realization in GUTs are presented.
We present a variant of the warped extra dimension, Randall-Sundrum (RS), framework which is based on five dimensional (5D) minimal flavor violation (MFV), in which the only sources of flavor breaking are two 5D anarchic Yukawa matrices. The Yukawa m
The flavor democracy hypothesis was introduced in seventies taking in mind three Standard Model (SM) families. Later, this idea was disfavored by the large value of the t-quark mass. In nineties the hypothesis was revisited assuming that extra SM fam